The JFreeChart Class Library

Version 1.0.13

Developer Guide

Written by David Gilbert
May 11, 2009

(© 2000-2009, Object Refinery Limited. All rights reserved.

IMPORTANT NOTICE:
We work hard to make this document as accurate and informative as we can, but
cannot guarantee that it is error-free.

Contents

Introduction

1.1 What is JFreeChart?
1.2 This Document e e e e e
1.3 Acknowledgementso
1.4 Comments and Suggestions L L e
Sample Charts

2.1 Introduction e e e
2.2 PieCharts. e e e
2.3 Bar Charts e
2.4 Line Chart e
2.5 XY Plots e
2.6 Time Series Charts
2.7 Histograms
2.8 Area Charts e
2.9 Difference Chart e
2.10 Step Chart oL
2.11 Gantt Chart e
2.12 Multiple Axis Charts
2.13 Combined and Overlaid Charts
2.14 Future Development e
Downloading and Installing JFreeChart

3.1 Imtroduction
3.2 Download
3.3 Unpacking the Files
3.4 Running the Demonstration Applications
3.5 Configuring JFreeChart for use in IDEs
3.6 Compiling the Source L
3.7 Generating the Javadoc Documentation 0oL
Using JFreeChart

4.1 OVEIVIEW . . v v o e e e e e e e e e
4.2 Creating Your First Chart L o
Pie Charts

5.1 Imtroduction L
5.2 Creating a Simple Pie Chart o o
5.3 Section Colours L
5.4 Section Outlines e
5.5 Null, Zero and Negative Values o o
5.6 Section and Legend Labels. o
5.7 Exploded Sections

CONTENTS

58 3D PieCharts.
5.9 Multiple Pie Charts e

6 Bar Charts
6.1 Introduction L
6.2 A Bar Chart e
6.3 The ChartFactory Class i
6.4 Simple Chart Customisation
6.5 Customising the Renderer L

7 Line Charts
7.1 Introduction e
7.2 A Line Chart Based On A Category Dataset
7.3 A Line Chart Based On An XYDataset

8 Time Series Charts
8.1 Introduction
8.2 Time Series Charts e

9 Customising Charts
9.1 Introduction e e
9.2 Chart Attributes
9.3 Plot Attributes
9.4 Axis Attributes L e

10 Dynamic Charts
10.1 OVErview o o i e e e
10.2 Background e
10.3 The Demo Application

11 Tooltips
11,1 OVerview o o oo o e
11.2 Generating Tool Tips. o o
11.3 Collecting Tool Tips o o o i e
11.4 Displaying Tool Tips e
11.5 Disabling Tool Tips« . . o i e
11.6 Customising Tool Tips o e

12 Ttem Labels
12.1 Introduction L
12.2 Displaying Item Labels oo
12.3 Ttem Label Appearance e
12.4 Ttem Label Positioning e
12.5 Customising the Item Label Text
12.6 Example 1 - Values Above a Threshold
12.7 Example 2 - Displaying Percentages 0.

13 Multiple Axes and Datasets
13.1 Introduction e e e e e e
13.2 An Example
13.3 Hints and Tips o o o

CONTENTS 3

14 Combined Charts 95
14.1 Introduction L e 95
14.2 Combined Domain Category Plot 95
14.3 Combined Range Category Plot 96
14.4 Combined Domain XY Plot 97
14.5 Combined Range XY Plot 98

15 Datasets and JDBC 100
15.1 Introduction oL 100
15.2 About JDBC 100
15.3 Sample Data 100
15.4 PostgreSQL o L L e 101
15.5 The JDBC Driver o e 102
15.6 The Demo Applications 103

16 Exporting Charts to Acrobat PDF 104
16.1 Introduction e e e e e 104
16.2 What is Acrobat PDF? 104
16.3 iText o o o e 104
16.4 Graphics2D 104
16.5 Getting Started e 105
16.6 The Application e 105
16.7 Viewing the PDF File 109
16.8 Unicode Characters. o it 109

17 Exporting Charts to SVG Format 112
17.1 Introduction oL 112
17.2 Background L e e 112
17.3 A Sample Application e 112

18 Applets 115
18.1 Introduction L L 115
18.2 TsSues o e e 115
18.3 A Sample Applet 116

19 Servlets 119
19.1 Introduction L L 119
19.2 A Simple Servlet 119
19.3 Compiling the Servlet 121
19.4 Deploying the Servlet 122
19.5 Embedding Charts in HTML Pages 122
19.6 Supporting Files L 127
19.7 Deploying Servlets Lo 128

20 Miscellaneous 130
20.1 Introduction e e e e 130
20.2 X11 / Headless Javao o 130
20.3 Java Server Pages 130
20.4 Loading Images e 130

21 Packages 131

21.1 Overviewo 131

CONTENTS

22 Package: org.jfree.chart

22.1
22.2
22.3
224
22.5
22.6
22.7
22.8
22.9

OVEIVIEW e
ChartColor s
ChartFactory e
ChartFrame e
ChartMouseEvent e
ChartMouseListener e
ChartPanel e
ChartRenderingInfo o
ChartTheme e

22.10ChartTransferable e
22.11ChartUtilities e e e
22.12CLpPath o
22.13DrawableLegendltem L
22.14Effect3D e
22.15HashUtilities e e e
22.16JFreeChart e e
22.17LegendItem L
22.18LegendItemCollection L.
22.19LegendItemSource L.
22.20LegendRenderingOrder Lo
22.21MouseWheelHandlero
22.22PolarChartPanel
22.23StandardChartTheme

23 Package: org.jfree.chart.annotations

23.1
23.2
23.3
234
23.5
23.6
23.7
23.8
23.9

OVEIVIEW o e e
AbstractXYAnnotation e e
CategoryAnnotation
CategoryLineAnnotationo
CategoryPointerAnnotation L oL
CategoryTextAnnotation
TextAnnotation L e e e e
XYAnnotation
XYBoxAnnotation

23.10XYDatalmageAnnotation L L
23.11XYDrawableAnnotation L L
23.12XYImageAnnotation oL oL
23.13XYLineAnnotation e
23.14XYPointerAnnotation
23.15XYPolygonAnnotation
23.16XYShapeAnnotationo
23.17XYTextAnnotation e e e e
23.18XYTitleAnnotation e e

24 Package: org.jfree.chart.axis

24.1
24.2
24.3
244
24.5
24.6
24.7
24.8
24.9

OVErvIeW e
AXIS .
AxisCollection L
AxisLocation e e
AXisSSpaceo
AxisState e
CategoryAnchor e
CategoryAXIS o .o
CategoryAxis3D L

CONTENTS 5

24.10CategoryLabelPosition L 206
24.11CategoryLabelPositions Lo 207
24.12CategoryLabelWidthType o o 207
24.13CategoryTick 208
24.14ColorBaro e 208
24.15CompassFormat L e 208
24.16CyclicNumberAxis o 209
24.17DateAXis e e e 210
24.18DateTickMarkPosition 215
24.19DateTick L 215
24.20DateTickUnit o 216
24.21DateTickUnitType o o o o e 218
24.22FExtendedCategoryAxXiso 218
24.23L0gAXIS e 218
24.24LogarithmicAxis L 221
24.25MarkerAxisBand oL 222
24.26ModuloAXis e e 223
24.27TMonthDateFormat e 224
24.28NumberAxXis e e e 225
24.29NumberAxis3D e 229
24.30NumberTick o 230
24.31NumberTickUnit o 231
24.32Period AXiS e 232
24.33PeriodAxisLabellnfo e 234
24.34QuarterDateFormat oo 236
24.35SegmentedTimeline oL 237
24.36StandardTickUnitSource L e 237
24.37SubCategoryAxXis e 238
24.38SymbolAXiS 239
24.39Tick e 241
24.40TickType . . . o o o e 241
24.41TickUnit o o L o e e 242
24.42TickUnits o L o e 243
24.43TickUnitSource e e e e 243
24.44Timeline L e e e 244
24.45ValueAxis e 244
24.46ValueTick oL 248
25 Package: org.jfree.chart.block 249
25.1 Introduction e e e e e e 249
25.2 AbstractBlock L. 249
25.3 Arrangement Lo e 251
25.4 Block e e 252
25.5 BlockBorder e e e 252
25.6 BlockContainer L 253
25.7 BlockFrame 255
25.8 BlockParams e 255
25.9 BlockResult e 255
25.10BorderArrangemento L. oL L e 256
25.11CenterArrangemento e e e 256
25.12ColorBlocko 256
25.13ColumnArrangement Lo e e 257
25.14EmptyBlocko 258

25.15EntityBlockParams Lo 258

CONTENTS

25.16EntityBlockResult Lo
25.17FlowArrangement oL L oLl e e
25.18GridArrangement L Lo e e e
25.19LabelBlock
25.20LengthConstraintType o
25.21LineBordero
25.22RectangleConstraint

26 Package: org.jfree.chart.editor
26.1 Introduction e e e
26.2 ChartEditor e
26.3 ChartEditorFactory
26.4 ChartEditorManager e
26.5 DefaultAxisEditor e
26.6 DefaultChartEditor e
26.7 DefaultChartEditorFactory
26.8 DefaultColorBarEditor
26.9 DefaultNumberAxisEditor
26.10DefaultPlotEditor e
26.11DefaultTitleEditor e
26.12PaletteChooserPanel e
26.13PaletteSample L.

27 Package: org.jfree.chart.encoders
27.1 Introduction L
27.2 EncoderUtil
27.3 ImageEncoderFactory
27.4 ImageEncoder L
27.5 ImageFormat
27.6 KeyPointPNGEncoderAdapter
27.7 SunJPEGEncoderAdapter
27.8 SunPNGEncoderAdapter

28 Package: org.jfree.chart.entity
28.1 Introduction L L e e e
28.2 Background
28.3 AxisEntity
28.4 CategoryltemEntity
28.5 CategoryLabelEntity
28.6 ChartEntity o
28.7 ContourEntity
28.8 EmtityCollection L
28.9 JFreeChartEntity oL
28.10LegendItemEntity L
28.11PieSectionEntity Lo
28.12PlotEntity o
28.13StandardEntityCollection L
28.14TickLabelEntity e
28.15TitleEntity oL
28.16XYAnnotationEntity
28.17XYItemEntity oL

CONTENTS

29 Package: org.jfree.chart.event
29.1 Introduction L e e e
29.2 AxisChangeEvent L
29.3 AxisChangelistener
29.4 ChartChangeEvent
29.5 ChartChangeEventType
29.6 ChartChangelistener
29.7 ChartProgressEvent L
29.8 ChartProgressListener
29.9 MarkerChangeEvent
29.10MarkerChangeListener
29.110verlayChangeEvent
29.120verlayChangeListener L
29.13PlotChangeEvent L
29.14PlotChangelistener L
29.15RendererChangeEvent L
29.16RendererChangelistener L L
29.17TitleChangeEvent e
29.18TitleChangeListener

30 Package: org.jfree.chart.imagemap
30.1 OVerview o o e e
30.2 DynamicDriveTool TipTagFragmentGenerator
30.3 ImageMapUtilities
30.4 OverLIBToolTipTagFragmentGenerator
30.5 StandardToolTipTagFragmentGenerator
30.6 StandardURLTagFragmentGenerator
30.7 ToolTipTagFragmentGenerator
30.8 URLTagFragmentGenerator

31 Package: org.jfree.chart.labels
31.1 Introduction e e e e e e e
31.2 AbstractCategoryltemLabelGenerator
31.3 AbstractPieltemLabelGenerator L o
31.4 AbstractXYItemLabelGenerator
31.5 BoxAndWhiskerToolTipGenerator
31.6 BoxAndWhiskerXYToolTipGenerator
31.7 CategoryltemLabelGenerator
31.8 CategorySeriesLabelGenerator Lo
31.9 CategoryToolTipGenerator it
31.10ContourToolTipGenerator o it
31.11CrosshairLabelGenerator
31.12CustomXYToolTipGenerator
31.13HighLowltemLabelGenerator
31.14IntervalCategoryltemLabelGenerator
31.15IntervalCategoryTool TipGenerator
31.16ItemLabelAnchor e e
3l.17ItemLabelPosition e e e
31.18MultipleXYSeriesLabelGenerator L
31.19PieSectionLabelGenerator Lo
31.20PieToolTipGenerator o o o vt it e e
31.21StandardCategoryltemLabelGenerator
31.22StandardCategorySeriesLabelGenerator
31.23StandardCategoryToolTipGenerator
31.24StandardContourToolTipGenerator

CONTENTS

31.25StandardCrosshairLabelGenerator
31.26StandardPieSectionLabelGenerator
31.27StandardPieToolTipGenerator
31.28StandardX YItemLabelGenerator
31.29StandardXYSeriesLabelGenerator L.
31.30StandardXYToolTipGenerator
31.31StandardXYZToolTipGenerator oot
31.32SymbolicXYItemLabelGenerator
31.33XYItemLabelGenerator
31.34XYSeriesLabelGenerator e
31.35XYToolTipGenerator o . o vt e e e
31.36XYZToolTipGenerator ittt

32 Package: org.jfree.chart.needle
32.1 OVEIVIEW o e e
32.2 ArrowNeedle e
32.3 LineNeedle
32.4 LongNeedle e
32.5 MeterNeedle e
32.6 PinNeedle e
32.7 PlumNeedle e
32.8 PointerNeedle
32.9 ShipNeedle
32.10WindNeedle e

33 Package: org.jfree.chart.panel
33.1 OVerview e
33.2 AbstractOverlay L e
33.3 CrosshairOverlay e
33.4 Overlay e

34 Package: org.jfree.chart.plot
34.1 OVerview e
34.2 CategoryCrosshairState
34.3 CategoryMarker L
34.4 CategoryPlot
34.5 ColorPalette e
34.6 CombinedDomainCategoryPlot
34.7 CombinedDomainXYPlot
34.8 CombinedRangeCategoryPlot
34.9 CombinedRangeXYPlot
34.10CompassPlot
34.11ContourPlot L
34.12ContourPlotUtilities« . .
34.13ContourValuePlot e
34.14Crosshair L e e
34.15CrosshairState L
34.16DatasetRenderingOrder L L
34.17DefaultDrawingSupplier L e
34.18DialShape e
34.19DrawingSupplier L
34.20FastScatterPlot e
34.21GreyPaletteo
34.22IntervalMarker L L oL
34.23Markero

CONTENTS

34.24MeterInterval L e e
34.25MeterPlot
34.26MultiplePiePlot
34.27Pannable L
34.28PieLabelDistributor e
34.29PieLabelRecord
34.30PiePlot
34.31PiePlot3D L
34.32PiePlotState
34.33Plot e
34.34PlotOrientation e e e
34.35PlotRenderingInfo
34.36PlotState
34.37TPlotUtilities e
34.38PolarPlot e
34.39RainbowPalette L
34.40RingPlot L
34.41SeriesRenderingOrder oL L
34.42SpiderWebPlot L
34.43ThermometerPlot e
34.44ValueAxisPlot e
34.45ValueMarker L e e e
34.46WaferMapPlot
34.4TXYPlot . . . e
34.487Zoomable L

35 Package: org.jfree.chart.plot.dial
35.1 Overview
35.2 AbstractDialLayer
35.3 ArcDialFrame e
35.4 DialBackground oL
35.5 DialCap e
35.6 DialFrame
35.7 DialLayer e e
35.8 DialLayerChangeEvent
35.9 DialLayerChangelistener
35.10DialPlot e e e
35.11DialPointer
3b.12DialPointer.Pin
35.13DialPointer.Pointer L
35.14DialScale L e e
35.15DialTextAnnotation e
35.16DialValuelndicator
35.17SimpleDialFrame
35.18StandardDialRange L
3b.19StandardDialScale

36 Package: org.jfree.chart.renderer
36.1 OVerview o e e
36.2 AbstractRenderer
36.3 AreaRendererEndType L L
36.4 DefaultPolarltemRenderer
36.5 GrayPaintScale L
36.6 LookupPaintScale
36.7 NotOutlierException

CONTENTS

36.8 Outlier e
36.9 OutlierList e
36.100utlierListCollection
36.11PaintScale
36.12PolarltemRenderer
36.13RendererState L e e
36.14RendererUtilities
36.15WaferMapRenderer

37 Package: org.jfree.chart.renderer.category
37.1 Overview e
37.2 AbstractCategoryltemRenderer oL
37.3 AreaRenderer
37.4 BarPainter e
37.5 BarRenderer
37.6 BarRenderer3D e
37.7 BoxAndWhiskerRenderer
37.8 CategoryltemRenderer
37.9 CategoryltemRendererState L L
37.10CategoryStepRenderer
37.11DefaultCategoryltemRenderer
37.12GanttRenderer L
37.13GradientBarPainter L
37.14GroupedStackedBarRenderer oL L oo
37.15IntervalBarRenderer
37.16LayeredBarRenderer L
37.17LevelRenderer
37.18LineAndShapeRenderer
37.19LineRenderer3D
37.20MinMaxCategoryRenderer L
37.21ScatterRenderer e
37.22StackedAreaRenderer L L
37.23StackedBarRenderer e
37.24StackedBarRenderer3D L
37.25StandardBarPainter L oL
37.26StatisticalBarRenderer
37.27StatisticalLineAndShapeRenderer
37.28WaterfallBarRenderer

38 Package: org.jfree.chart.renderer.xy
38.1 OVEIVIEW v e e e e
38.2 AbstractXYItemRenderer
38.3 CandlestickRenderer e
38.4 ClusteredXYBarRenderer
38.5 CyclicXYItemRenderer
38.6 DefaultXYItemRenderer
38.7 DeviationRenderer
38.8 GradientXYBarPainter
38.9 HighLowRenderer
38.10SamplingXYLineRenderer L
38.11StackedXYAreaRenderer
38.12StackedXYAreaRenderer2o
38.13StackedXYBarRenderer
38.14StandardXYBarPainter
38.15StandardX YItemRenderer

10

CONTENTS

38.16VectorRenderer
38.17WindIltemRenderer
38.18XYAreaRenderer
38.19XYBarPainter
38.20XYBarRenderer L
38.21XYBlockRenderer e e
38.22XYBoxAndWhiskerRenderer
38.23XYBubbleRenderer
38.24XYDifferenceRenderer L
38.25XYDotRenderer
38.26XYErrorRenderer L
38.27XYItemRenderer L e e
38.28XYItemRendererState L
38.29XYLineAndShapeRenderer
38.30XYShapeRenderer
38.31XYSplineRenderer
38.32XYStepRenderer
38.33XYStepAreaRenderer
38.34YIntervalRenderer L

39 Package: org.jfree.chart.servlet
39.1 OVEIVIEW v o i e e e e e e e
39.2 ChartDeleter e e e e
39.3 DisplayChart
39.4 ServletUtilities o L

40 Package: org.jfree.chart.title
40.1 OVErvIeW o oo e e
40.2 Events Lo e
40.3 CompositeTitle e
40.4 DateTitle o o e
40.5 ITmageTitle o o L o e
40.6 LegendGraphic L
40.7 LegendltemBlockContainer L0
40.8 LegendTitle o L oL e
40.9 PaintScaleLegendo
40.10TextTitle o e
40.11Title . . . o L o e

41 Package: org.jfree.chart.urls
41.1 OVerview e
41.2 CategoryURLGenerator e
41.3 CustomCategoryURLGenerator
41.4 CustomPieURLGenerator i
41.5 CustomXYURLGenerator e
41.6 PieURLGenerator e
41.7 StandardCategoryURLGenerator
41.8 StandardPieURLGenerator
41.9 StandardXYURLGenerator e
41.10StandardXYZURLGenerator 0 v it e e e e
41.11TimeSeriesURLGenerator o
41.12URLUtIIIES o e
41.13XYURLGenerator e
41.14XYZURLGenerator o o v v i e e e e e e

11

CONTENTS

42 Package: org.jfree.chart.util

42.1 Overview
42.2 HexNumberFormat . . .
42.3 LineUtilities
42.4 LogFormat
42.5 RelativeDateFormat . .
42.6 ResourceBundleWrapper
42.7 XYCoordinateType . . .

43 Package: org.jfree.data
43.1 Introduction
43.2 ComparableObjectItem
43.3 ComparableObjectSeries
43.4 DataUtilities
43.5 DefaultKeyedValue . . .
43.6 DefaultKeyedValues . .
43.7 DefaultKeyedValues2D .
43.8 Domainlnfo
43.9 DomainOrder
43.10KeyedObject
43.11KeyedObjects
43.12KeyedObjects2D
43.13KeyedValue
43.14Keyed ValueComparator

43.15KeyedValueComparatorType

43.16KeyedValues
43.17KeyedValues2D
43.18KeyToGroupMap
43.19Range
43.20Rangelnfo
43.21RangeType
43.22UnknownKeyException
43.23Value
43.24Values
43.25Values2D

44 Package: org.jfree.data.category

44.1 Introduction
44.2 CategoryDataset
44.3 CategoryToPieDataset .
44.4 DefaultCategoryDataset

44.5 DefaultIntervalCategoryDataset L oo

44.6 IntervalCategoryDataset

45 Package: org.jfree.data.contour

45.1 Introduction
45.2 ContourDataset
45.3 DefaultContourDataset
45.4 NonGridContourDataset

12

CONTENTS

46 Package: org.jfree.data.function
46.1 Introduction L L e e e e e e e
46.2 Function2D e e e e e e
46.3 LineFunction2D e e e e
46.4 NormalDistributionFunction2D
46.5 PowerFunction2D

47 Package: org.jfree.data.gantt
47.1 Introduction oL e
47.2 GanttCategoryDataset L

47.3 Task

47.4 TaskSerieso e e e e
47.5 TaskSeriesCollection e e e e e
47.6 XYTaskDataset e e e e e

48 Package: org.jfree.data.general
48.1 Introduction oL
48.2 AbstractDataset
48.3 AbstractSeriesDataset L.
48.4 CombinationDataset e
48.5 CombinedDataset e e e e e e
48.6 Dataset L e
48.7 DatasetChangeEvent L
48.8 DatasetChangelistener L
48.9 DatasetGroup e e e
48.10DatasetUtilities L e e e e
48.11DefaultHeatMapDataset e
48.12DefaultKeyedValueDataset Lo oo
48.13DefaultKeyedValuesDataset L
48.14DefaultKeyedValues2DDataset
48.15DefaultPieDataset e
48.16DefaultValueDataset
48.17HeatMapDataset oL e
48.18HeatMapUtilities e
48.19KeyedValueDataset oL L e
48.20KeyedValuesDataset L e
48.21KeyedValues2DDataset L oL
48.22PieDataset L oL e

48.23Series

48.24SeriesChangeEvent Lo
48.25SeriesChangelistener
48.26SeriesDataset L. L e e e e e e
48.27SeriesException oL L
48.28SubSeriesDataset
48.29ValueDataset oL oL e
48.30WaferMapDataset

49 Package: org.jfree.data.io
49.1 Introduction L e

49.2 CSV

13

CONTENTS

50 Package: org.jfree.data.jdbc
50.1 Introduction e e e
50.2 JDBCCategoryDataset
50.3 JDBCPieDataset
50.4 JDBCXYDataset e e

51 Package: org.jfree.data.statistics
51.1 Introduction
51.2 BoxAndWhiskerCalculator L
51.3 BoxAndWhiskerCategoryDataset o
51.4 BoxAndWhiskerltem
51.5 BoxAndWhiskerXYDataset
51.6 DefaultBoxAndWhiskerCategoryDataset
51.7 DefaultBoxAndWhiskerXYDataset
51.8 DefaultMultiValueCategoryDataset
51.9 DefaultStatisticalCategoryDataset
51.10HistogramBino
51.11HistogramDataset
51.12HistogramType L
51.13MeanAndStandardDeviation oL oL o
51.14MultiValueCategoryDataset
51.16Regression L e
51.16SimpleHistogramBin L oL
51.17SimpleHistogramDataset oo
51.18StatisticalCategoryDataset
51.19Statistics L e

52 Package: org.jfree.data.time
52.1 Introduction L
52.2 DateRange e
52.3 Day . . . o
52.4 DynamicTimeSeriesCollection o o
52.5 FixedMillisecond
52.6 Hour e
52.7 Millisecond L e
52.8 Minute
52.9 Month s
52.10MovingAverageo
52.11Quarter e
52.12RegularTimePeriod L
52.13Second e e
52.14SimpleTimePeriod L
52.15TimePeriod L
52.16TimePeriodAnchor e
52.17TimePeriodFormatException L L oo
52.18TimePeriodValue e e
52.19TimePeriodValues
52.20TimePeriodValuesCollection
52.21TImeSeries e
52.22TimeSeriesCollection e
52.23TimeSeriesDataltem e
52.24TimeSeriesTableModel
52.25TimeTableXYDataset
52.26Week e
B52.2TYear e e

CONTENTS

53 Package: org.jfree.data.time.ohlc
53.1 Introduction
53.2 OHLC
53.3 OHLCItem e e e e e e
53.4 OHLCSeries e e e
53.5 OHLCSeriesCollection e e e

54 Package: org.jfree.data.xml
54.1 Introductiono
54.2 Usage v o e e e e
54.3 CategoryDatasetHandler
54.4 CategorySeriesHandler L L
54.5 DatasetReader
54.6 DatasetTags e
54.7 TtemHandler L
54.8 KeyHandler 0 e
54.9 PieDatasetHandler
54.10RootHandler
54.11ValueHandler oL

55 Package: org.jfree.data.xy
55.1 Introduction L
55.2 AbstractIntervalXYDataset e
55.3 AbstractXYDataset e
55.4 AbstractXYZDataset
55.5 CategoryTableXYDataset
55.6 DefaultHighLowDataset
55.7 DefaultIntervalXYDataset
55.8 DefaultOHLCDataset e
55.9 DefaultTableXYDataset e
55.10DefaultWindDataset L
55.11DefaultXYDataset L
55.12DefaultXYZDataset
55.13IntervalXYDataset e
55.14IntervalXYDelegate L
55.15IntervalXYZDataset L
55.16MatrixSeries s
55.17MatrixSeriesCollection
55.18NormalizedMatrixSeries e e e
55.190HLCDataltem e
55.200HLCDataset e e e
55.21TableXYDataset
55.22Vector
55.23VectorDataltem
55.24VectorSeries e e e
55.25VectorSeriesCollection L e
55.26VectorXYDataset
55.27WindDataset
55.28XIntervalDataltem
55.29XIntervalSeries
55.30XIntervalSeriesCollection
55.31XisSymbolico
55.32XYBarDataset
55.33XYCoordinate
55.34XYDataltem e

15

CONTENTS

55.35XYDataset
55.36XYDatasetTableModel
55.37XYInterval
55.38XYIntervalDataltem
55.39X YIntervalSeries
55.40XYIntervalSeriesCollection
55.41XYSerieso
55.42XYSeriesCollection
55.43XY7ZDataset
55.44YInterval
55.45YIntervalDataltem
55.46YIntervalSeries
55.47YIntervalSeriesCollection
55.48YisSymbolico oo
55.49YWithXInterval

Migration

A1 Introduction
A2 1.012t01.0.13
A3 1.0.11to1.0.12 e
A4 1.010t0 1.0.11
A5 1.09t01.0.10
A6 1.08t01.09
A7 1.07t01.0.8
A8 1.0.6t01.0.7
A9 1.05t01.0.6
A101.04t01.0.5 e
A111.03t01.04
A121.02t01.03 e
A131.01t01.0.2 e
A141.0.0t0 1.0.1
A1509xt01.0.0

JCommon

B.1 Introduction.
B.2 Align.
B.3 GradientPaintTransformer
B.4 GradientPaintTransformType
B.5 PublicCloneable
B.6 RectangleAnchor
B.7 RectangleEdge oo L.
B.8 Rectanglelnsets
B.9 StandardGradientPaintTransformer
B.10 TextAnchor
B.11 UnitType o o oo

Configuring IDEs for JFreeChart

C.1 Introduction.
C.2 NetBeans s
C.3 Eclipse e

The GNU Lesser General Public Licence

D.1 Introduction.
D.2 The Licence e
D.3 Frequently Asked Questions

16

Chapter 1

Introduction

1.1 What is JFreeChart?

1.1.1 Overview

JFreeChart is a free chart library for the Java(tm) platform. It is designed for use in applications,
applets, servlets and JSP. JFreeChart is distributed with complete source code subject to the terms
of the GNU Lesser General Public Licence, which permits JFreeChart to be used in proprietary or
free software applications (see Appendix D for details).

Dual Axis Chart

Value
Arepuoosg

Category

Figure 1.1: A sample chart

Figure 1.1 shows a typical chart created using JFreeChart. Many more examples are shown in later
sections of this document.

1.1.2 Features

JFreeChart can generate pie charts, bar charts (regular and stacked, with an optional 3D-effect),
line charts, scatter plots, time series charts (including moving averages, high-low-open-close charts
and candlestick plots), Gantt charts, meter charts (dial, compass and thermometer), symbol charts,
wind plots, combination charts and more.

Additional features include:

17

CHAPTER 1. INTRODUCTION 18

e data is accessible from any implementation of the defined interfaces;

e export to PNG and JPEG image file formats (or you can use Java’s ImagelO library to export
to any format supported by ImagelO);

e export to any format with a Graphics2D implementation including:

— PDF via iText (http://www.lowagie.com/iText/);
— SVG via Batik (http://xml.apache.org/batik/);

e tool tips;

e interactive zooming (drag region and/or mouse-wheel) and panning;

e chart mouse events (these can be used for drill-down charts or information pop-ups);

e annotations;

e HTML image map generation;

e works in applications, servlets, JSP (thanks to the Cewolf project!) and applets;

e distributed with complete source code subject to the terms of the GNU Lesser General Public

License (LGPL);

JFreeChart is written entirely in Java, and should run on any implementation of the Java 2 platform
(JDK 1.3.1 or later). It will also work quite well with free runtimes based on either OpenJDK or
GNU Classpath (0.92 or later).?

1.1.3 Home Page

The JFreeChart home page can be found at:

http://www. jfree.org/jfreechart/

Here you will find all the latest information about JFreeChart, including sample charts, download
links, Javadocs, a discussion forum and more.

1See http://cewolf.sourceforge.net for details.
2See http://openjdk. java.net/ or http://www.gnu.org/software/classpath/ for details.

CHAPTER 1. INTRODUCTION 19

1.2 This Document

1.2.1 Versions

Two versions of this document are available:

e a free version, the “JFreeChart Installation Guide”, is available from the JFreeChart home
page, and contains chapters up to and including the instructions for installing JFreeChart and
running the demo;

e a premium version, the “JFreeChart Developer Guide”, is available only to those that have
paid for it, and includes additional tutorial chapters and reference documentation for the
JFreeChart classes.

If you wish to purchase the latter version, please visit the following site:
http://wuww.object-refinery.com/jfreechart/guide.html

We’d like to thank everyone that has supported JFreeChart in the past by purchasing the JFreeChart
Developer Guide!

1.2.2 Disclaimer

Please note that I have put in considerable effort to ensure that the information in this document
is up-to-date and accurate, but I cannot guarantee that it does not contain errors. You must use
this document at your own risk or mot use it at all.

1.3 Acknowledgements

JFreeChart contains code and ideas from many people. At the risk of missing someone out, I would
like to thank the following people for contributing to the project:

Eric Alexander, Richard Atkinson, David Basten, David Berry, Chris Boek, Zoheb
Borbora, Anthony Boulestreau, Jeremy Bowman, Daniel Bridenbecker, Nicolas Brodu,
Jody Brownell, David Browning, Brian Cabana, Sgren Caspersen, Chuanhao Chiu,
Brian Cole, Pascal Collet, Martin Cordova, Paolo Cova, Michael Duffy, Don Elliott,
Rune Fausk, Jonathan Gabbai, Serge V. Grachov, Daniel Gredler, Hans-Jurgen Greiner,
Joao Guilherme Del Valle, Nick Guenther, Aiman Han, Cameron Hayne, Jon Iles,
Wolfgang Irler, Sergei Ivanov, Adrian Joubert, Darren Jung, Xun Kang, Bill Kele-
men, Norbert Kiesel, Gideon Krause, Pierre-Marie Le Biot, Arnaud Lelievre, Wolfgang
Lenhard, David Li, Yan Liu, Tin Luu, Craig MacFarlane, Achilleus Mantzios, Thomas
Meier, Aaron Metzger, Jim Moore, Jonathan Nash, Barak Naveh, David M. O’Donnell,
Krzysztof Paz, Tomer Peretz, Xavier Poinsard, Andrzej Porebski, Luke Quinane, Vik-
tor Rajewski, Eduardo Ramalho, Michael Rauch, Cameron Riley, Klaus Rheinwald,
Dan Rivett, Scott Sams, Michel Santos, Thierry Saura, Andreas Schneider, Jean-Luc
Schwab, Bryan Scott, Tobias Self, Mofeed Shahin, Pady Srinivasan, Greg Steckman,
Roger Studner, Gerald Struck, Irv Thomae, Eric Thomas, Rich Unger, Daniel van Enck-
evort, Laurence Vanhelsuwé, Sylvain Vieujot, Jelai Wang, Mark Watson, Alex Weber,
Richard West, Matthew Wright, Benoit Xhenseval, Christian W. Zuckschwerdt, Hari
and Sam (oldman).

1.4 Comments and Suggestions

If you have any comments or suggestions regarding this document, please send e-mail to:

david.gilbert@object-refinery.com

Chapter 2

Sample Charts

2.1 Introduction

This section shows some sample charts created using JFreeChart. It is intended to give a reasonable
overview of the types of charts that JFreeChart can generate. For other examples, please run the
demo application included in the JFreeChart distribution:

java -jar jfreechart-1.0.13-demo.jar

The complete source code for the demo application is available to purchasers of the JFreeChart
Developer Guide.!

2.2 Pie Charts

JFreeChart can create pie charts using any data that conforms to the PieDataset interface. Figure
2.1 shows a simple pie chart.

Pie Chart Demo 1

[® 0ne @ Two @ Three © Four ® Five © six|

Figure 2.1: A simple pie chart (see PieChartDemol. java)

1See http://www.object-refinery.com/jfreechart/guide.html for details.

20

CHAPTER 2. SAMPLE CHARTS

Individual pie sections can be “exploded”, as shown in figure 2.2.

Pie Chart Demo 2

Six (15% percent)

One (34% percent)
Five (9% percent)

Four (14% percent)

Two (8% percent)
Three (21% percent)

(©0ne ® Two @ Three ® Four ® Five ® Six

Figure 2.2: A pie chart with an “exploded” section (see PieChartDemo2. java)

You can also display pie charts with a 3D effect, as shown in figure 2.3.

Pie Chart 3D Demo 1

Visual Basic

[® Java @ Visual Basic ® C/C++ O PHP @ Perl|

Figure 2.3: A pie chart drawn with a 3D effect (see PieChart3DDemo1. java)

At the current time it is not possible to explode sections of the 3D pie chart.

CHAPTER 2. SAMPLE CHARTS 22

2.3 Bar Charts

A range of bar charts can be created with JFreeChart, using any data that conforms to the
CategoryDataset interface. Figure 2.4 shows a bar chart with a vertical orientation.

Bar Chart Demo 1

A 2 2 L] °
N N N N N
oa\er‘ ¢ a\er‘ ¢ a\er‘ ¢ a\eQO‘ ¢ a\eQO‘

Category

|m First m Second ® Third]

Figure 2.4: A vertical bar chart (see BarChartDemol. java)

Bar charts can be displayed with a 3D effect as shown in figure 2.5.

3D Bar Chart Demo

“l‘, |

)

17.5-
15.0-
12.5
10.0
7.5
5.0
2.5

o '1 I]

Value

-5.0

-7.5
-10.0
-12.5-

A 2 S
Oa\egox\! Oa\agox\l Oa\egox\! oa\ego‘\]

Category

|l Series 1 M Series 2 ™ Series 3 Series 4 M Series 5 ' Series 6 " Series 7 M Series 8 M Series 9|

Figure 2.5: A bar chart with 3D effect (see BarChart3DDemol. java)

CHAPTER 2. SAMPLE CHARTS

Another variation,

the waterfall chart, is shown in figure 2.6.

Cost Per Unit

Product Cost Breakdown

Labour Administration Marketing Distribution Total Expense
Expense Category

Bar charts can also be generated from time series data—for example, see figure 2.7:

Figure 2.6: A waterfall chart (see WaterfallChartDemol. java)

Number of People

State Executions - USA

Source: http://www.amnestyusa.org/abolish/listbyyear.do

0
1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004
Year

N Executions

Figure 2.7: An XY bar chart (see XYBarChartDemol. java)

23

CHAPTER 2. SAMPLE CHARTS 24

2.4 Line Chart

The line chart can be generated using the same CategoryDataset that is used for the bar charts—
figure 2.8 shows an example.

Java Standard Class Library

Number of Classes By Release

Class Count

JDK 1.0 JDK 1.1 SDK 1.2 SDK 1.3 SDK 1.4
Release

Source: Java In A Nutshell (4th Edition) by David Flanagan (O'Reilly)

Figure 2.8: A line chart (see LineChartDemol. java)

CHAPTER 2. SAMPLE CHARTS 25

2.5 XY Plots

A third type of dataset, the XYDataset, is used to generate a range of chart types.

The standard XY plot has numerical x and y axes. By default, lines are drawn between each data
point—see figure 2.9.

Line Chart Demo 4

2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
> 0.00
-0.25
-0.50
-0.75
-1.00
-1.25
-1.50
-1.75
-2.00

‘Ely = cosine(x) Oy = 2*sine(x)‘

Figure 2.9: A line chart (see LineChartDemo. java)

Scatter plots can be drawn by drawing a shape at each data point, rather than connecting the
points with lines—an example is shown in figure 2.10.

Scatter Plot Demo 1

900
800
700
600 o

500 a®*. oo
400 ao¥
300 B . %
200 .

100

-100 Bg
200 o B g
- (L
L) l‘tll

-300 s}
-400 @ ™
-500 5 .
-600

-700
F
-800

-100 -75 -50 -25 0 25 50 75 100
X

‘ @ Sample 0 ® Sample 1 Sample 2 Sample 3‘

Figure 2.10: A scatter plot (see ScatterPlotDemol. java)

CHAPTER 2. SAMPLE CHARTS 26

2.6 Time Series Charts

JFreeChart supports time series charts, as shown in figure 2.11.

Legal & General Unit Trust Prices

1851
180
175
170
165
160
155
150
1451
1401}
135
130
12511
1201 |
115
110
105 |
100

Price Per Unit

Mar-2001 May-2001 Jul-2001 Sep-2001 Nov-2001 Jan-2002 Mar-2002 May-2002 Jul-2002
Date

‘-I- L&G European Index Trust -®- L&G UK Index Trust‘

Figure 2.11: A time series chart (see TimeSeriesDemo1. java)

It is straightforward to add a moving average line to a time series chart—see figure 2.12 for an
example.

Time Series Demo 8

1.68
1.67
1.66
1.65
1.64
1.63

1.621

Value

161
1.60
1.59
1884 I |

1574 L

1.56

Jan-2001 Mar-2001 May-2001 Jul-2001 Sep-2001 Nov-2001
Date

‘— EUR/GBP — 30 day moving average‘

Figure 2.12: A time series chart with a moving average (see TimeSeriesDemo8. java)

CHAPTER 2. SAMPLE CHARTS

27

Using an OHLCDataset (an extension of XYDataset) you can display high-low-open-close data, see
figure 2.13 for an example.

65
60
55
50
45
40
35

Value

30
25
20
15
10

OHLC Demo 2
7-Jan 14-Jan 21-Jan 28-Jan 4-Feb 11-Feb 18-Feb
Time

‘l Series 1 — Series 1-MAVG

Figure 2.13: A high-low-open-close chart (see HighLowChartDemo2. java)

2.7 Histograms

Histograms can be generated using an IntervalXYDataset (another extension of XYDataset), see
figure 2.14 for an example.

Histogram Demo

32.5

30.0

27.5

25.0

22.5

20.0

17.5

15.0

12.5

7.5

5.0

2.5

0.0"

2.0

2.5 3.0

3.5

40 45 50 55 60 65 70 75 80 85 9.0 9.5 10.0

NH1 BH2

Figure 2.14: A histogram (see HistogramDemol. java)

CHAPTER 2. SAMPLE CHARTS 28

2.8 Area Charts

You can generate an area chart for data in a CategoryDataset or an XYDataset. Figure 2.15 shows
an example.

XY Area Chart Demo

Range (Y)

10 15 20 25 30 35 40 45 50 55 6.0 65 7.0 7.5 8.0
Domain (X)

‘l Random 1 A Random 2‘

Figure 2.15: An area chart (see XYAreaChartDemol. java)

JFreeChart also supports the creation of stacked area charts as shown in figure 2.16.

Stacked XY Area Chart Demo
325 N B i T H i i
30.01|
27.5
25.01}
22.54|
20.01| i
17 .5 | 5551
15.04f
12.54) 4
10.0

7.5
5.0
2.5
0.0

Y Value

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
X Value

M Series 1 A Series 2

Figure 2.16: A stacked area chart (see StackedXYAreaChartDemol. java)

2.9 Difference Chart

A difference chart highlights the difference between two series (see figure 2.17).
A second example, shown in figure 2.18 shows how a date axis can be used for the range values.

CHAPTER 2. SAMPLE CHARTS

Difference Chart Demo 1

Value

Aug-2006 Sep-2006 Oct-2006 Nov-2006 Dec-2006 Jan-2007 Feb-2007
Time

‘7 Random 1 — Random 2‘

Figure 2.17: A difference chart (see DifferenceChartDemo!. java)

Daylight Hours - London, UK

Data source: http://www.sunrisesunset.com/

22:00

20:00

18:00

16:00

14:00

Time

12:00

10:00

08:00

06:00

04:00

lish Time

Feb-2004 Apr-2004 Jun-2004 Aug-2004 Oct-2004 Dec-2004
Time

‘ Sunrise = Sunset

Figure 2.18: A difference chart with times on the range azis (see DifferenceChartDemo2. java)

CHAPTER 2. SAMPLE CHARTS 30

2.10 Step Chart

A step chart displays numerical data as a sequence of “steps”—an example is shown in figure 2.19.

XYStepRenderer Demo 1
9.0
8.5
8.0
7.5
7.0
6.5 |
6.0
5.5
> 5.0 |
4.5
4.0
3.5 |
3.0
2.5 |
2.0
1.5
1.0
0.5
0.0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
X
—— Series 1 — Series 2

Figure 2.19: A step chart (see XYStepRendererDemol. java)

Step charts are generated from data in an XYDataset.

CHAPTER 2. SAMPLE CHARTS

2.11 Gantt Chart

Gantt charts can be generated using data from an IntervalCategoryDataset, as

2.20.

31

shown in figure

Write Proposal

Obtain Approval
Requirements Analysis
Design Phase

Design Signoff

x Alpha Implementation
ﬁ Design Review
Revised Design Signoff
Beta Implementation
Testing

Final Implementation

Signoff

Gantt Chart Demo

Date
May-2001 Jul-2001 Sep-2001 Nov-2001
|
n
|
I
|
I
I
I
-
-
]
I
]
I
|
—_—
—_—

|m Scheduled M Actual

Figure 2.20: A Gantt chart (see GanttChartDemol. java)

Another example, showing subtasks and progress indicators, is shown in figure 2.21.

Gantt Chart Demo

Date

May-2001 Jul-2001 Sep-2001 Nov-2001

Write Proposal

Obtain Approval
Requirements Analysis
Design Phase

Design Signoff

¢ Alpha Implementation
ﬁ Design Review
Revised Design Signoff
Beta Implementation
Testing

Final Implementation

Signoff

m Scheduled

Figure 2.21: A Ganit chart with progress indicators (see GanttChartDemo2. java)

CHAPTER 2. SAMPLE CHARTS

2.12 Multiple Axis Charts

32

JFreeChart has support for charts with multiple axes. Figure 2.22 shows a price-volume chart that
demonstrates this feature.

Eurodollar Futures Contract (MARO03)

98.50
98.25
98.00
97.75
97.50
97.25
97.00
96.75
96.50
96.25
96.00
95.75
95.50
95.25
95.00
94.75
94.50
94.25

Price

Jan-2002

\

\

WL 1

Mar-2002 May-2002

Date

‘7 Price i Volume‘

0
Nov-2002

750,000
700,000
650,000
600,000
550,000
500,000
450,000
400,000
350,000
300,000
250,000
200,000
150,000
100,000
50,000

awnjoA

Figure 2.22: A price-volume chart (see PriceVolumeDemol. java)

This feature is supported by the CategoryPlot and XYPlot classes. Figure 2.23 shows an example

with four range axes.

1,250

1,200

1,100

1,050

Range Axis 2

950

900

850

800

Primary Range Axis

Multiple Axis Demo 1

Four datasets and four range axes.

110

105

100

95

90

85

80

75

70

65

60

11:00

11:30 12:00 12:30 13:00 13:30 14:00
Time of Day

‘— Series 1 — Series 2 — Series 3 — Series 4‘

13,000
12,000
11,000
10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

20.0

€ sIxy abuey

¥ sixy abuey

Figure 2.23: A chart with multiple axes (see MultipleAzisDemol. java)

CHAPTER 2. SAMPLE CHARTS 33

2.13 Combined and Overlaid Charts

JFreeChart supports combined and overlaid charts. Figure 2.24 shows a line chart overlaid on top
of a bar chart.

Freshmeat Software Projects
By Programming Language
As at 5 March 2003

@ 30001 M =
g oo P
9 50% @
o 2

Unix Shell

Language

‘l Languages & Cumulative|

Figure 2.24: An overlaid chart (see ParetoChartDemol. java)

It is possible to combine several charts that share a common domain axis, as shown in figure 2.25.

Combined Domain Category Plot Demo

Value
B

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8
Category

= First -~ Second I Third [Fourth

Figure 2.25: A chart with a combined domain (see CombinedCategoryPlotDemol. java)

In a similar way, JFreeChart can combine several charts that share a common range axis, see figure
2.26.

CHAPTER 2. SAMPLE CHARTS 34

Combined (Range) XY Plot

18,000
17,000
16,000
15,000
14,000
13,000
12,000
11,000
10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

Value

7-Mar 14-Mar 7-Mar 14-Mar
Date Date

'I Series 1 — Series 2‘

Figure 2.26: A chart with a combined range (see CombinedXYPlotDemo2. java)

2.14 Future Development

JFreeChart is free software,? so anyone can extend it and add new features to it. Already, more than
80 developers from around the world have contributed code back to the JFreeChart project. It is
likely that many more chart types will be developed in the future as developers modify JFreeChart
to meet their requirements. Check the JFreeChart home page regularly for announcements and
other updates:

http://www.jfree.org/jfreechart/

And if you would like to contribute code to the project, please join in...

2See http://wuw.fsf.org

Chapter 3

Downloading and Installing
JFreeChart

3.1 Introduction

This section contains instructions for downloading, unpacking, and (optionally) recompiling JFree-
Chart. Also included are instructions for running the JFreeChart demonstration application, and
generating the Javadoc HTML files from the JFreeChart source code.

3.2 Download

You can download the latest version of JFreeChart from:
http://www. jfree.org/jfreechart/download/

There are two versions of the JFreeChart download:

File: ‘ Description:

jfreechart-1.0.13.tar.gz | JFreeChart for Linux/Unix.
jfreechart-1.0.13.zip JFreeChart for Windows.

The two files contain the same source code. The main difference is that all the text files in the zip
download have been recoded to have both carriage return and line-feed characters at the end of
each line.

JFreeChart uses the JCommon class library (currently version 1.0.16). The JCommon runtime jar
file is included in the JFreeChart download, but if you require the source code (recommended) then
you should also download JCommon from:

http://www. jfree.org/jcommon/

3.3 Unpacking the Files

After downloading JFreeChart, you need to unpack the files. You should move the download file
to a convenient directory—when you unpack JFreeChart, a new subdirectory (jfreechart-1.0.13)
will be created in the same location as the zip or tar.gz archive file.

3.3.1 Unpacking on Linux/Unix

To extract the files from the download on Linux/Unix, enter the following command:

35

CHAPTER 3. DOWNLOADING AND INSTALLING JFREECHART 36

tar xvzf jfreechart-1.0.13.tar.gz

This will extract all the source, run-time and documentation files for JFreeChart into a new directory
called jfreechart-1.0.13.

3.3.2 Unpacking on Windows

To extract the files from the download on Windows, you can use the jar utility. Enter the following
command:

jar -xvf jfreechart-1.0.13.zip

This will extract all the source, run-time and documentation files for JFreeChart into a new directory
called jfreechart-1.0.13.

3.3.3 The Files

The top-level directory (jfreechart-1.0.13) contains the files and directories listed in the following
table:

File/Directory: Description:

README. txt Important information - read this first!

NEWS Project news.

ChangeLog A detailed log of changes made to JFreeChart.

ant A directory containing an Ant build.xml script. You can use

this script to rebuild JFreeChart from the source code included
in the distribution.

checkstyle A directory containing several Checkstyle property files.
These define the coding conventions used in the JFreeChart
source code.

experimental A directory containing source files for classes that are not part
of the standard JFreeChart API (yet). We would appreciate
feedback on this code. Please note that the API for these
classes is subject to change.

1lib A directory containing the JFreeChart jar file, and other li-
braries used by JFreeChart.

source A directory containing the source code for JFreeChart.

swt A directory containing the source code for the experimental

SWT code. Please note that the API for these classes is sub-
ject to change.

tests A directory containing the source code for the JFreeChart unit
tests.

jfreechart-1.0.13-demo.jar | A runnable jar file containing demo applications.

licence-LGPL.txt The JFreeChart licence (GNU LGPL).

You should spend some time familiarising yourself with the files included in the download. In
particular, you should always read the README. txt file.

3.4 Running the Demonstration Applications

A demonstration application is included in the distribution that shows a wide range of charts that
can be generated with JFreeChart . To run the demo, type the following command:

java -jar jfreechart-1.0.13-demo. jar

You can also run the demo directly from the JFreeChart home page via web-start.

The source code for the demo application is not included in the JFreeChart distribution, but is
available to download separately when you purchase the JFreeChart Developer Guide.'

f you have purchased the guide and you want to download the demo source code, look for the file
jfreechart-1.0.13-demos.zip on the download page for the JFreeChart Developer Guide.

CHAPTER 3. DOWNLOADING AND INSTALLING JFREECHART 37

3.5 Configuring JFreeChart for use in IDEs

If, like most developers, you use an integrated development environment (IDE) such as Eclipse or
NetBeans for your Java development work, you’ll want to configure JFreeChart within that IDE.
The procedure for this is IDE-specific—refer to Appendix C for more details.

3.6 Compiling the Source

To recompile the JFreeChart classes, you can use the Ant build.xml file included in the distribution.
Change to the ant directory and type:

ant compile
This will recompile all the necessary source files and recreate the JFreeChart run-time jar file.
To run the script requires that you have Ant 1.5.1 (or later) installed on your system, to find out
more about Ant visit:

http://ant.apache.org/

It is possible to recompile JEreeChart without using Ant, but there are one or two “gotchas” that
you have to take special care to avoid:

e some JFreeChart classes (particularly resource bundles) are not referenced directly in the code,
and some compilers omit to compile them—this results in runtime errors or problems due to
missing class files;

e if you create your own JFreeChart jar file, you need to be sure to include the non-Java files
(resource bundle .properties files, gorilla. jpg, etc.).

In the end, it’s simpler to learn Ant and use the script included in the JFreeChart distribution.

3.7 Generating the Javadoc Documentation

The JFreeChart source code contains extensive Javadoc comments. You can use the javadoc tool
to generate HTML documentation files directly from the source code.

To generate the documentation, use the javadoc target in the Ant build.xml script:
ant javadoc

This will create a javadoc directory containing all the Javadoc HTML files, inside the main jfreechart-1.0.13
directory.

Chapter 4

Using JFreeChart

4.1 Overview

This section presents a simple introduction to JEreeChart, intended for new users of JFreeChart.

4.2 Creating Your First Chart

4.2.1 Overview
Creating charts with JFreeChart is a three step process. You need to:
e create a dataset containing the data to be displayed in the chart;
e create a JFreeChart object that will be responsible for drawing the chart;
e draw the chart to some output target (often, but not always, a panel on the screen);

To illustrate the process, we describe a sample application (First.java) that produces the pie chart
shown in figure 4.1.

Sample Pie Chart

Category 1 =43.2

Category 3 = 79.5

Category 2 = 27.9

|ICateg0|y1 W Categary 2 ICateg0|y3|

Figure 4.1: A pie chart created using First. java

Each of the three steps outlined above is described, along with sample code, in the following sections.

4.2.2 The Data

Step one requires us to create a dataset for our chart. This can be done easily using the DefaultPieDataset
class, as follows:

38

CHAPTER 4. USING JFREECHART 39

// create a dataset...

DefaultPieDataset dataset = new DefaultPieDataset();
dataset.setValue("Category 1", 43.2);
dataset.setValue("Category 2", 27.9);
dataset.setValue("Category 3", 79.5);

Note that JFreeChart can create pie charts using data from any class that implements the PieDataset
interface. The DefaultPieDataset class (used above) provides a convenient implementation of this
interface, but you are free to develop an alternative dataset implementation if you want to.!

4.2.3 Creating a Pie Chart

Step two concerns how we will present the dataset created in the previous section. We need to
create a JFreeChart object that can draw a chart using the data from our pie dataset. We will use
the ChartFactory class, as follows:

// create a chart...

JFreeChart chart = ChartFactory.createPieChart (
"Sample Pie Chart",

dataset,
true, // legend?
true, // tooltips?

false // URLs?
);

Notice how we have passed a reference to the dataset to the factory method. JFreeChart keeps a
reference to this dataset so that it can obtain data later on when it is drawing the chart.

The chart that we have created uses default settings for most attributes. There are many ways
to customise the appearance of charts created with JFreeChart, but in this example we will just
accept the defaults.

4.2.4 Displaying the Chart

The final step is to display the chart somewhere. JFreeChart is very flexible about where it draws
charts, thanks to its use of the Graphics2D class.

For now, let’s display the chart in a frame on the screen. The ChartFrame class contains the
machinery (a ChartPanel) required to display charts:

// create and display a frame...

ChartFrame frame = new ChartFrame("Test", chart);
frame.pack();

frame.setVisible(true);

And that’s all there is to it...

4.2.5 The Complete Program

Here is the complete program, so that you can see which packages you need to import and the order
of the code fragments given in the preceding sections:

import org.jfree.chart.ChartFactory;

import org.jfree.chart.ChartFrame;

import org.jfree.chart.JFreeChart;

import org.jfree.data.general.DefaultPieDataset;

public class First {

/%%
* The starting point for the demo.
*
* Qparam args ignored.
*/
public static void main(String[] args) {

IThis is similar in concept to the way that Swing’s JTable class obtains data via the TableModel interface. In
fact, this was the inspiration for using interfaces to define the datasets for JFreeChart.

CHAPTER 4. USING JFREECHART

// create a dataset...

DefaultPieDataset dataset = new DefaultPieDataset();

dataset.setValue("Category 1", 43.2);
dataset.setValue("Category 2", 27.9);
dataset.setValue("Category 3", 79.5);

// create a chart...

JFreeChart chart = ChartFactory.createPieChart(

"Sample Pie Chart",

dataset,
true, // legend?
true, // tooltips?

false // URLs?
);

// create and display a frame...

ChartFrame frame = new ChartFrame("First", chart);

frame.pack() ;
frame.setVisible(true);

40

Hopefully this has convinced you that it is not difficult to create and display charts with JFreeChart.

Of course, there is much more to learn...

Chapter 5

Pie Charts

5.1 Introduction

This chapter provides information about using some of the standard features of the pie charts in
JFreeChart, including:

e controlling the color and outline of pie sections;

e handling of null and zero values;

e pie section labels (customising the text, altering the space allocated);
e “exploded” sections;

e multiple pie charts.

e displaying charts with a 3D effect;

In addition to this chapter, you should refer to the PiePlot reference documentation in section
34.30.

5.2 Creating a Simple Pie Chart

A step-by-step guide to creating a simple pie chart is included in the previous chapter 4.

5.3 Section Colours

Default fill colours for the pie sections are allocated automatically! the first time a plot is rendered. If
you don’t like the default colours, you can set them yourself using the setSectionPaint (Comparable,
Paint) method. For example:

PiePlot plot = (PiePlot) chart.getPlot();
plot.setSectionPaint("Section A", new Color (200, 255, 255));
plot.setSectionPaint("Section B", new Color (200, 200, 255));

A demo that uses custom colours (PieChartDemo2.java) is included in the JFreeChart demo collec-
tion.

In addition to the per-series section colour attributes, there is also a base or default setting—for
more information, refer to the documentation for the PiePlot class (section 34.30).

lnside the lookupSectionPaint (Comparable, boolean) method of the PiePlot class.

41

CHAPTER 5. PIE CHARTS 42

5.4 Section Outlines

Section outlines are drawn, by default, as a thin grey line around each pie section. The PiePlot
class provides options to:

e switch off the outlines completely;
e change the outlines for all sections by changing the default values;

e control the outline for particular pie sections independently;

5.4.1 Outline Visibility

To switch off the section outlines completely, use the following code:

PiePlot plot = (PiePlot) chart.getPlot();
plot.setSectionOutlinesVisible(false);

At any time, you can make the outlines visible again using:

plot.setSectionOutlinesVisible(true);

Calls to this method trigger a PlotChangeEvent, which will cause the chart to be repainted immedi-
ately if it is displayed in a ChartPanel.

5.4.2 Outline Appearance

When outlines are visible, you can change the colour and style of the outline for all pie sections
(using the base settings) or individual pie sections (using the per series settings).

At the base layer, a default setting is defined—this is used when no higher level settings have been
made. You can change the base settings with these methods in the PiePlot class:

public void setBaseSectionOutlinePaint(Paint paint);

public void setBaseSectionOutlineStroke(Stroke stroke);
Sometimes, you may prefer to set the outline paint and stroke on a “per series” basis, perhaps to
highlight a particular section in the chart. For this, you can use the series layer settings, defined
via these methods:

public void setSectionOutlinePaint(Comparable key, Paint paint);

public void setSectionOutlineStroke(Comparable key, Stroke stroke);
The first argument for each method is the section key from the dataset. If you set the value for a
section to null, the base layer setting will be used instead.

5.5 Null, Zero and Negative Values

A PieDataset can contain null, zero or negative values which are awkward or impossible to display
in a pie chart. Some special handling is built into the PiePlot class for these.

If a zero value is found in the dataset, the PiePlot class, by default, will place a label at the position
where the pie section would be displayed if it had a positive value and will also add an item to the
chart’s legend. If you prefer zero values to be ignored, you can set a flag for this, as follows:

PiePlot plot = (PiePlot) chart.getPlot();

plot.setIgnoreZeroValues(true);
A similar approach is taken for null values, which represent a missing or unknown value in the
dataset. The default handling is the same as for zero values, and if you prefer null values to be
ignored, you can set a flag as follows:

PiePlot plot = (PiePlot) chart.getPlot();
plot.setIgnoreNullValues (true);

There does not seem to be a sensible way to represent negative values in a pie chart, and JFreeChart
will always ignore them.

CHAPTER 5. PIE CHARTS 43

5.6 Section and Legend Labels

The text used for the section labels, both on the chart and in the chart’s legend, is fully customisable.
Default label generators are installed automatically, but if you need to you can change these with
the following methods:

public void setLabelGenerator(PieSectionLabelGenerator generator);

public void setLegendLabelGenerator (PieSectionLabelGenerator generator);
The StandardPieSectionLabelGenerator class is typically used as the generator, and provides enough
flexibility to handle most custom labelling requirements (but if not, you are free two write your
own class that implements the PieSectionLabelGenerator interface). The generator works by using
Java’s MessageFormat class to construct labels by substituting values that are derived from the
dataset—see table 5.1 for the available substitutions.

Key: ‘ Value:

{0} The section key as a String.
{1} The section value.
{2} The section value as a percentage of the total of all values in the dataset.

Figure 5.1: StandardPieSectionLabelGenerator substitutions

By way of example, suppose you have a PieDataset containing the following values:

Section Key: ‘ Section Value:
S1 3.0

S2 5.0

S3 null

sS4 2.0

Figure 5.2: A sample dataset

...then the following format strings would generate the labels shown:

Format String: ‘ Section: ‘ Generated Label:
{o} 0 s1

{0} has value {1} | 1 S2 has value 5.0
{0} ({2} percent) | O S1 (30 percent)
{o} = {1} 2 83 = null

Figure 5.3: Format string examples

The PieChartDemo2. java application (included in the JFreeChart demo collection) shows a custom
label generator in use.

5.7 Exploded Sections

The PiePlot class supports the display of “exploded” sections, in which a pie section is offset from
the centre of the chart to highlight it. For example, the PieChartDemo2. java application creates the
chart shown in figure 5.6.

The amount by which a section is offset from the chart is specified as a percentage of the radius of
the pie chart, for example 0.30 (30 percent) is used in the example.

PiePlot plot = (PiePlot) chart.getPlot();

plot.setExplodePercent ("Section A", 0.30);
To make space for the sections that are offset from the centre of the pie chart, the radius of the
main pie is reduced, so a pie chart with exploded sections will appear smaller than a pie chart with
no exploded sections.

CHAPTER 5. PIE CHARTS 44

= Pie Chart Demo 2 Sll=)lF3
Pie Chart Demo 2

Siw (15% percent)

One (34% percent)

Five (9% percent) -

Four i14% percent)

Twao (8% percent)

|
Three (21% percent) S

@0ne =432 ®Two = 10 ®Three = 27.5 @Four = 17.5 @Five = 11
@5k = 13,4

Figure 5.4: A pie chart with an “exploded” section

5.8 3D Pie Charts

JFreeChart includes a PieP1ot3D class that adds a pseudo-3D effect to pie charts—for example, see
figure 5.5. PieP1lot3D is a subclass of PiePlot, so you can just substitute it when you create your
pie chart. Or if you construct your pie charts using the ChartFactory class, it is sufficient to call
the createPieChart3D() method instead of the createPieChart () method.

- Pie Chart 3D Demo 1 = |[E [

Pie Chart 3D Demo 1

Visual Basic = 10 / (i =17 5]

@ Java = 43.2 eVisual Basic = 10 @ C/C++ = 17.5 ©PHP = 32.5 @ Perl = nuII|

Figure 5.5: A 3D pie chart

There are some limitations with this class:

e exploded sections are not supported;

e it is not possible to set the angle of “rotation” for the 3D effect—if the plot is wider than it
is tall, the chart usually looks good, but if the plot is taller than it is wide, the 3D effect is a

little distorted.

Some demo applications (PieChart3DDemol-3.java) are included in the JFreeChart demo collection.

5.9 Multiple Pie Charts

As a convenience, the MultiplePiePlot class enables you to create a single chart that displays
multiple pie plots using data from a CategoryDataset. An example is shown in figure 5.6.

The individual pie charts are created by “rubber stamping” a single pie chart multiple times. For
each rendering of the pie chart, a new PieDataset is extracted from the next row (or column) of the

CategoryDataset.

CHAPTER 5. PIE CHARTS 45

W5ales/0l WSales/02 mSales/03 Sales/04

Figure 5.6: A chart using MultiplePiePlot

A number of demos (MultiplePieChartDemol-4.java) are included in the JFreeChart demo collec-
tion.

Chapter 6

Bar Charts

6.1 Introduction

This chapter provides an introduction to creating bar charts with JFreeChart. We begin with a
very simple bar chart, then go on to describe some of the many options that JFreeChart provides
for customising the charts. After covering the standard bar chart and its options, we’ll move on to
some more complex bar chart variants:

e stacked bar charts;
e bar charts for time series data;
e histograms.

By the end of this chapter, you should have a good overview of the features that JFreeChart supports
for bar chart creation.

6.2 A Bar Chart

6.2.1 Overview

Bar charts are used to provide a visual representation of tabular data. For example, consider the
following table, which contains a simple set of data in two rows and three columns:

‘ Column 1: ‘ Column 2: ‘ Column 3:

Row 1: | 1.0 5.0 3.0
Row 2: | 2.0 3.0 2.0

Figure 6.1: Sample data

In JFreeChart, this table is referred to as a dataset, each column heading is a category, and each
row in the table is a series. Each row heading is a series name (or series key). A bar chart that
presents this data is shown in figure 6.2.

You can see in the sample chart that JFreeChart groups the items from each column (category)
together, and uses colours to highlight the data from each row (series). The chart’s legend provides
the link between the bar colours and the series name/key.

6.2.2 Creating a Dataset

The first step in creating a bar chart is to create an appropriate dataset. The set of methods that
JFreeChart uses to access the tabular data for a bar chart is defined by the CategoryDataset interface.

46

CHAPTER 6. BAR CHARTS 47

Bar Chart Demo

5.0
4.5
4.0

30
25
2.0
15
10
0.5
0.0

WValue

Calumn 1 Column 2 Column 3
Category

mFEow 1 mRow 2

Figure 6.2: A bar chart (see BarEzamplel. java)

This interface defines a read-only interface to the dataset, because that is all that JFreeChart
requires to draw charts. A dataset can, but is not required to, provide methods to update the
dataset.

A convenient class that implements this interface is the DefaultCategoryDataset class. Here is how
you might create a dataset for the values given in table 6.1:

DefaultCategoryDataset dataset = new DefaultCategoryDataset();
dataset.addValue(1.0, "Row 1", "Column 1");
dataset.addValue(5.0, "Row 1", "Column 2");
dataset.addValue(3.0, "Row 1", "Column 3");
dataset.addValue(2.0, "Row 2", "Column 1");
dataset.addValue (3.0, "Row 2", "Column 2");
dataset.addValue(2.0, "Row 2", "Column 3");

6.2.3 Creating a Bar Chart

The next step is to create a JFreeChart instance that draws a bar chart for this example dataset.
Taking a short-cut, we use the ChartFactory class to create the JFreeChart instance:

JFreeChart chart = ChartFactory.createBarChart (
"Bar Chart Demo", // chart title
"Category", // domain axis label
"Value", // range axis label
dataset, // data
PlotOrientation.VERTICAL, // orientation
true, // include legend
true, // tooltips?
false // URLs?

)s

Most of the arguments to the createBarChart() method are obvious, but a few of them demand
further explanation:

e the plot orientation can be either horizontal or vertical (for bar charts, this corresponds to
the way the bars are drawn, horizontally or vertically);

e the tooltips flag controls whether or not a tool tip generator is added to the chart—in this
example, we've set this flag to true so that we’ll see tool tips when we display the chart in a
Swing application;

CHAPTER 6. BAR CHARTS 48

e the URLs flag is only relevant when creating drill-down reports using HTML image maps, so
we set it to false here.

After we’ve completed this first bar chart example, we’ll come back and take a closer look at what
the ChartFactory class is doing “behind the scenes” here.

6.2.4 Displaying the Chart

To complete our first bar chart example, we pass the JFreeChart instance to a ChartPanel and
display it in a simple Swing application. The full source code for this example is listed here:

/¥ ————————————————

* BarExamplel.java

* (C) Copyright 2006, by Object Refinery Limited.
*

*/
package tutorial;
import java.awt.Dimension;

/%%
* A simple demonstration application showing how to create a bar chart.
*/

public class BarExamplel extends ApplicationFrame {

/**
* Creates a new demo instance.
*
* Q@param title the frame title.
*/
public BarExamplel(String title) {
super(title);
DefaultCategoryDataset dataset = new DefaultCategoryDataset();
dataset.addValue(1.0, "Row 1", "Column 1");
dataset.addValue(5.0, "Row 1", "Column 2");
dataset.addValue(3.0, "Row 1", "Column 3");
dataset.addValue(2.0, "Row 2", "Column 1");
dataset.addValue(3.0, "Row 2", "Column 2");
dataset.addValue(2.0, "Row 2", "Column 3");
JFreeChart chart = ChartFactory.createBarChart(

"Bar Chart Demo", // chart title
"Category", // domain axis label
"Value", // range axis label
dataset, // data
PlotOrientation.VERTICAL, // orientation

true, // include legend
true, // tooltips?

false // URLs?

)

ChartPanel chartPanel = new ChartPanel(chart, false);
chartPanel.setPreferredSize(new Dimension(500, 270));
setContentPane (chartPanel);

}

/%

* Starting point for the demonstration application.

*

* Q@param args ignored.

*/

public static void main(String[] args) {
BarExamplel demo = new BarExamplel("Bar Demo 1");
demo.pack();
RefineryUtilities.centerFrameOnScreen(demo) ;
demo.setVisible(true);

CHAPTER 6. BAR CHARTS 49

}

If you compile and run this example, you should see a frame containing the chart in figure 6.2.

6.3 The ChartFactory Class

In our first example, the ChartFactory class is used to piece together a JFreeChart instance that
renders a bar chart. Here we take a closer look at how this is done, so we can see a little more of the
underlying structure of our bar chart. Understanding this structure is key to being able customise
the appearance of the chart.

Here are the important parts of the code from the createBarChart() method in the ChartFactory
class:

CategoryAxis categoryAxis = new CategoryAxis(categoryAxisLabel);

2 ValueAxis valueAxis = new NumberAxis(valueAxisLabel);
3 BarRenderer renderer = new BarRenderer();
[snip...]
4 CategoryPlot plot = new CategoryPlot(dataset, categoryAxis, valueAxis,
renderer) ;
5 plot.setOrientation(orientation);

6 JFreeChart chart = new JFreeChart(title, JFreeChart.DEFAULT_TITLE_FONT,
plot, legend);

Here’s what this code is doing:

e Our bar chart has two axes, one that displays categories from the dataset (a CategoryAxis),
and another that provides the numerical scale against which the data values are plotted (a
NumberAxis). You can see these axes being constructed in lines 1 and 2 above, using the axis
labels that we passed to the createBarChart () method.

e At line 3, a BarRenderer is created—this is the class that is used to draw the bar for each
data item. The renderer handles most of the drawing work, and you’ll see later that you can
substitute another type of renderer to change the overall appearance of the chart.

e The dataset, axes and renderer are all managed by a CategoryPlot, which coordinates most
of the interaction between these components. When you customise charts, you’ll often need
to get a reference to the chart’s plot, which in turn can give you access to the axes, renderer
and dataset. At line 4, the plot is created, and the other components are assigned to it.

e Finally, the plot is wrapped in a JFreeChart instance, with the specified title. The JFreeChart
class provides the top-level access to a chart, but most of the “guts” of a chart is defined
at the plot level (or in the objects managed by the plot, such as the axes, dataset(s) and
renderer(s)).

Armed with this knowledge of the internal structure of our chart, in the following sections, we’ll
slowly customise our bar chart.

6.4 Simple Chart Customisation

Some simple modifications to the appearance of a bar chart can be made by calling methods in the
JFreeChart and CategoryPlot classes. For example, to change the background colours for the chart
and plot:

CHAPTER 6. BAR CHARTS 50

chart.setBackgroundPaint (Color.white) ;

CategoryPlot plot = (CategoryPlot) chart.getPlot();
plot.setBackgroundPaint (Color.lightGray) ;
plot.setRangeGridlinePaint (Color.white);

This code fragment (from BarExample2.java) changes the background colour for the chart, then
obtains a reference to the chart’s plot and modifies it as well—see figure 6.3.

Bar Demo 2
5.0
4.5
4.0
3.5
a 3.0
=
w25
=
2.0
1.5
1.0
po N N0 NN R R
Calumn 1 Calumn 2 Calumn 3
Category

mFRow 1 mRow 2

Figure 6.3: A bar chart (see BarEzample2. java)

A cast of the plot reference (to CategoryPlot) is required—it is safe to make this cast, because we
know that a CategoryPlot is used for this chart type. JFreeChart uses other plot types (PiePlot,
XYPlot, and so on) for different kinds of charts. You almost always need to cast the plot reference to
one of these types, because the base class (Plot) only defines a few common attributes and methods.
As you become more familiar with JFreeChart, you’ll learn which Plot subclass is used for each
type of chart.

In our example, we also use the plot reference to change the colour of the grid lines for the range
axis. Take a look through the API documentation for the CategoryPlot class, to see what else you
could modify here.

6.5 Customising the Renderer

Recall from section 6.3 that the CategoryPlot manages a renderer which, in the case of a regular
bar chart, is an instance of BarRenderer. If we obtain a reference to this renderer, a large number
of customisation options become available.

6.5.1 Bar Colours

To change the colours used for each series in the chart:

BarRenderer renderer = (BarRenderer) plot.getRenderer();
renderer.setSeriesPaint (0, Color.gray);
renderer.setSeriesPaint (1, Color.orange);

renderer.setDrawBarOutline(false);

This results in the chart shown in figure 6.4. Note that the setSeriesPaint () method is defined in
the AbstractRenderer base class—you can use this for all types of renderer.

CHAPTER 6. BAR CHARTS 51

Bar Demo 3

WValue

Calumn 1 Column 2 Column 3
Category

B Row 1 = Row 2

Figure 6.4: A bar chart (see BarEzample3. java)

6.5.2 Bar Spacing Within Categories

Among other things, the renderer controls the spacing of bars within each category.! So we could
remove all the space between bars in the same category, as follows:

renderer.setItemMargin(0.0);

This results in the chart shown in figure 6.5. Notice how the bars have grown a little wider—this
is because JFreeChart is now allocating less of the overall space to provide gaps between the bars,

so the bars themselves resize a little bigger.

Bar Demo 4

Walue

Calumn 1 Calumn 2 Calumn 3
Category

B Row 1 = Row 2

Figure 6.5: A bar chart (see BarEzamples. java)

IThe spacing between categories is controlled by the CategoryAxis. That will be covered later.

Chapter 7

Line Charts

7.1 Introduction

This section describes the line charts that can be created with JFreeChart. It is possible to create
line charts using data from either the CategoryDataset interface or the XYDataset interface.

7.2 A Line Chart Based On A Category Dataset

7.2.1 Overview

A line chart based on a CategoryDataset simply connects each (category, value) data item using
straight lines. This section presents a sample application that generates the following chart shown
in figure 7.1.

Java Standard Class Library
Number of Classes By Release
3000 o0
2500
£ -
3 2000 T
S
1500 S
bri
o -
o1oon
500 e
o—
DK 1.0 DK 1.1 sDr 1.2 SDKE 1.3 DK 1.4
Felease
Source: Java In A Mutshell i4th Edition) by David Flanagan (O'Reilly)

Figure 7.1: A sample line chart

The full source code for this demo (LineChartDemol. java) is available for download with the JFreeChart
Developer Guide.

7.2.2 The Dataset

The first step in generating the chart is, as always, to create a dataset. In the example, the
DefaultCategoryDataset class is used:

DefaultCategoryDataset dataset = new DefaultCategoryDataset();

dataset.addValue(212, "Classes", "JDK 1.0");

dataset.addValue(504, "Classes", "JDK 1.1");
dataset.addValue (1520, "Classes", "SDK 1.2");

52

CHAPTER 7. LINE CHARTS 53

dataset.addValue(1842, "Classes", "SDK 1.3");
dataset.addValue(2991, "Classes", "SDK 1.4");

Note that you can use any implementation of the CategoryDataset interface as your dataset.

7.2.3 Constructing the Chart

The createLineChart() method in the ChartFactory class provides a convenient way to create the
chart. Here is the code:

// create the chart...

JFreeChart chart = ChartFactory.createLineChart(
"Java Standard Class Library", // chart title
"Release", // domain axis label
"Class Count", // range axis label
dataset, // data
PlotOrientation.VERTICAL, // orientation
false, // include legend
true, // tooltips
false // urls

);

This method constructs a JFreeChart object with a title, no legend, and plot with appropriate axes,

renderer and tooltip generator. The dataset is the one created in the previous section.

7.2.4 Customising the Chart

The chart will be initialised using default settings for most attributes. You are, of course, free to
modify any of the settings to change the appearance of your chart. In this example, we customise
the chart in the following ways:

e two subtitles are added to the chart;

the chart background color is set to white;

the plot background color is set to light gray;

the gridline color is changed to white;

e the range axis is modified to display integer values only;

e the renderer is modified to fill shapes with white.

The first subtitle is added at the default position (below the main title):

chart.addSubtitle(new TextTitle("Number of Classes By Release"));

The next subtitle takes a little extra code, to change the font, place it at the bottom of the chart,
and align it to the right side:
TextTitle source = new TextTitle(
"Source: Java In A Nutshell (4th Edition) "
+ "by David Flanagan (0’Reilly)"
);
source.setFont (new Font("SansSerif", Font.PLAIN, 10));
source.setPosition(RectangleEdge.BOTTOM) ;

source.setHorizontalAlignment (HorizontalAlignment.RIGHT) ;
chart.addSubtitle (source);

Changing the chart’s background color is simple, because this is an attribute maintained by the
JFreeChart class:

chart.setBackgroundPaint (Color.white);

To change other attributes, we first need to obtain a reference to the CategoryPlot object used by
the chart:

CHAPTER 7. LINE CHARTS 54

CategoryPlot plot = (CategoryPlot) chart.getPlot();

To set the background color for the plot, and change the gridline color:

plot.setBackgroundPaint (Color.lightGray) ;
plot.setRangeGridlinePaint (Color.white);

The plot is responsible for drawing the data and axes on the chart. Some of this work is delegated
to a renderer, which you can access via the getRenderer() method. The renderer maintains most
of the attributes that relate to the appearance of the data items within the chart.

LineAndShapeRenderer renderer = (LineAndShapeRenderer) plot.getRenderer(); renderer.setShapesVisible(true);
renderer.setDrawOutlines(true); renderer.setUseFillPaint (true);

The plot also manages the chart’s axes. In the example, the range axis is modified so that it only
displays integer values for the tick labels:

// change the auto tick unit selection to integer units only...
NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setStandardTickUnits (NumberAxis.createIntegerTickUnits());

There are many other ways to customise the chart. Please refer to the reference section of this
document, the API documentation and the source code for details of the methods available.

7.2.5 The Complete Program

The code for the demonstration application is presented in full, complete with the import state-
ments. The source code is available for download from the same location as the JFreeChart Devel-
oper Guide.

[* mmm e

* LineChartDemol. java

* (C) Copyright 2002-2005, by Object Refinery Limited.
*

*/
package demo;

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Font;

import javax.swing.JPanel;

import org.jfree.chart.ChartFactory;

import org.jfree.chart.ChartPanel;

import org.jfree.chart.JFreeChart;

import org.jfree.chart.axis.NumberAxis;

import org.jfree.chart.plot.CategoryPlot;

import org.jfree.chart.plot.PlotOrientation;

import org.jfree.chart.renderer.category.LineAndShapeRenderer;
import org.jfree.chart.title.TextTitle;

import org.jfree.data.category.CategoryDataset;

import org.jfree.data.category.DefaultCategoryDataset;
import org.jfree.ui.ApplicationFrame;

import org.jfree.ui.HorizontalAlignment;

import org.jfree.ui.RectangleEdge;

import org.jfree.ui.RefineryUtilities;

/%%

* A simple demonstration application showing how to create a line chart using
* data from a {@link CategoryDataset}.

*/

public class LineChartDemol extends ApplicationFrame {

/*%
* Creates a new demo.
*
* Q@param title the frame title.
*/
public LineChartDemol(String title) {
super (title);

CHAPTER 7. LINE CHARTS

CategoryDataset dataset = createDataset();

JFreeChart chart = createChart(dataset);

ChartPanel chartPanel = new ChartPanel(chart);
chartPanel .setPreferredSize(new Dimension(500, 270));
setContentPane (chartPanel);

}

/%%
* Creates a sample dataset.
*
* Q@return The dataset.
*/
private static CategoryDataset createDataset() {
DefaultCategoryDataset dataset = new DefaultCategoryDataset();
dataset.addValue(212, "Classes", "JDK 1.0");
dataset.addValue(504, "Classes", "JDK 1.1");
dataset.addValue (1520, "Classes", "SDK 1.2");
dataset.addValue(1842, "Classes", "SDK 1.3");
dataset.addValue (2991, "Classes", "SDK 1.4");
return dataset;

/%
* Creates a sample chart.
*
* Qparam dataset a dataset.
*
* Q@return The chart.
*/

private static JFreeChart createChart(CategoryDataset dataset) {

// create the chart...
JFreeChart chart = ChartFactory.createLineChart(

"Java Standard Class Library", // chart title
"Release", // domain axis label
"Class Count", // range axis label
dataset, // data
PlotOrientation.VERTICAL, // orientation
false, // include legend
true, // tooltips

false // urls

);

chart.addSubtitle(new TextTitle("Number of Classes By Release"));
TextTitle source = new TextTitle(

"Source: Java In A Nutshell (4th Edition) "

+ "by David Flanagan (0’Reilly)"
);
source.setFont (new Font("SansSerif", Font.PLAIN, 10));
source.setPosition(RectangleEdge .BOTTOM) ;
source.setHorizontalAlignment (HorizontalAlignment .RIGHT) ;
chart.addSubtitle(source);

chart.setBackgroundPaint (Color.white);

CategoryPlot plot = (CategoryPlot) chart.getPlot();
plot.setBackgroundPaint (Color.lightGray) ;
plot.setRangeGridlinePaint (Color.white);

// customise the range axis...
NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setStandardTickUnits (NumberAxis.createIntegerTickUnits());

// customise the renderer...
LineAndShapeRenderer renderer

= (LineAndShapeRenderer) plot.getRenderer();
renderer.setShapesVisible(true) ;
renderer.setDrawOutlines (true);
renderer.setUseFillPaint (true);
renderer.setFillPaint (Color.white);

return chart;

}

/%%
* Creates a panel for the demo (used by SuperDemo.java).
*
* Q@return A panel.
*/
public static JPanel createDemoPanel() {
JFreeChart chart = createChart(createDataset());

CHAPTER 7. LINE CHARTS

return new ChartPanel(chart);

}

/%
* Starting point for the demonstration application.
*
* Qparam args ignored.
*/
public static void main(String[] args) {
LineChartDemol demo = new LineChartDemol("Line Chart Demo");
demo.pack();
RefineryUtilities.centerFrameOnScreen(demo) ;
demo.setVisible(true);

56

CHAPTER 7. LINE CHARTS o7

7.3 A Line Chart Based On An XYDataset

7.3.1 Overview

A line chart based on an XYDataset connects each (z, y) point with a straight line. This section
presents a sample application that generates the chart shown in figure 7.2.

Line Chart Demo 2
8 =
7
6
5
=y
3
2 /
1 i
o | I S W S S W N W SR —
1 2 3 4 5 6 7 8 9 10
X
|-.—First - Second Third|

Figure 7.2: A sample line chart using an XYPlot

The complete source code (LineChartDemo2.java) is available to download with the JFreeChart
Developer Guide.

7.3.2 The Dataset

For this chart, an XYSeriesCollection is used as the dataset (you can use any implementation of
the XYDataset interface). For the purposes of the self-contained demo, we create this dataset in
code, as follows:

XYSeries seriesl = new XYSeries("First");

seriesl.add(1.0, 1.0);
seriesl.add(2.0, 4.0);
seriesl.add (3.0, 3.0);
seriesl.add (4.0, 5.0);
seriesl.add(5.0, 5.0);
seriesl.add(6.0, 7.0);
seriesl.add (7.0, 7.0);
seriesl.add (8.0, 8.0);

XYSeries series2 = new XYSeries("Second");

series2.add(1.0, 5.0);
series2.add(2.0, 7.0);
series2.add (3.0, 6.0);
series2.add (4.0, 8.0);
series2.add(5.0, 4.0);
series2.add (6.0, 4.0);
series2.add (7.0, 2.0);
series2.add (8.0, 1.0);

XYSeries series3 = new XYSeries("Third");

series3.add (3.0, 4.0);
series3.add(4.0, 3.0);
series3.add (5.0, 2.0);
series3.add(6.0, 3.0);
series3.add(7.0, 6.0);
series3.add (8.0, 3.0);
series3.add(9.0, 4.0);

series3.add(10.0, 3.0);

XYSeriesCollection dataset = new XYSeriesCollection();
dataset.addSeries(seriesl);
dataset.addSeries(series?2);
dataset.addSeries(series3);

return dataset;

CHAPTER 7. LINE CHARTS 58

Notice how each series has x-values (not just y-values) that are independent from the other series.
The dataset will also accept null in place of a y-value. When a null value is encountered, no
connecting line is drawn, resulting in a discontinuous line for the series.

7.3.3 Constructing the Chart

The createXYLineChart () method in the ChartFactory class provides a convenient way to create the
chart:

JFreeChart chart = ChartFactory.createXYLineChart (

"Line Chart Demo 2", // chart title
"x", // x axis label
"y", // y axis label
dataset, // data
PlotOrientation.VERTICAL,

true, // include legend
true, // tooltips

false // urls

);

This method constructs a JFreeChart object with a title, legend and plot with appropriate axes
and renderer. The dataset is the one created in the previous section. The chart is created with a
legend, and tooltips are enabled (URLs are disabled—these are only used in the creation of HTML
image maps).

7.3.4 Customising the Chart

The chart will be initialised using default settings for most attributes. You are, of course, free
to modify any of the settings to change the appearance of your chart. In this example, several
attributes are modified:

e the chart background color;

e the plot background color;

the axis offsets;

the color of the domain and range gridlines;

the renderer is modified to draw shapes as well as lines;

the tick unit collection for the range axis, so that the tick values always display integer values;

Changing the chart’s background color is simple:

// set the background color for the chart...
chart.setBackgroundPaint (Color.white) ;

Changing the plot background color, the axis offsets, and the color of the gridlines, requires a
reference to the plot. The cast to XYPlot is required so that we can access methods specific to this
type of plot:

// get a reference to the plot for further customisation...
XYPlot plot = (XYPlot) chart.getPlot();
plot.setBackgroundPaint (Color.lightGray) ;
plot.setAxisOffset (new RectangleInsets(5.0, 5.0, 5.0, 5.0));
plot.setDomainGridlinePaint (Color.white);
plot.setRangeGridlinePaint (Color.white);

The renderer is modified to display filled shapes in addition to the default lines:

XYLineAndShapeRenderer renderer = (XYLineAndShapeRenderer) plot.getRenderer();
renderer.setShapesVisible(true) ;
renderer.setShapesFilled(true) ;

CHAPTER 7. LINE CHARTS 59

The final modification is a change to the range axis. We change the default collection of tick units
(which allow fractional values) to an integer-only collection:

// change the auto tick unit selection to integer units only...
NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setStandardTickUnits (NumberAxis.createIntegerTickUnits());

Refer to the source code, Javadoc API documentation or elsewhere in this document for details of
the other customisations that you can make to an XYPlot.

7.3.5 The Complete Program

The code for the demonstration application is presented here in full, complete with the import
statements:

* (C) Copyright 2002-2005, by Object Refinery Limited.
*

*/
package demo;

import java.awt.Color;
import javax.swing.JPanel;

import org.jfree.chart.ChartFactory;

import org.jfree.chart.ChartPanel;

import org.jfree.chart.JFreeChart;

import org.jfree.chart.axis.NumberAxis;
import org.jfree.chart.plot.PlotOrientation;
import org.jfree.chart.plot.XYPlot;

import org.jfree.chart.renderer.xy.XYLineAndShapeRenderer;
import org.jfree.data.xy.XYDataset;

import org.jfree.data.xy.XYSeries;

import org.jfree.data.xy.XYSeriesCollection;
import org.jfree.ui.ApplicationFrame;

import org.jfree.ui.Rectanglelnsets;

import org.jfree.ui.RefineryUtilities;

/*%

* A simple demonstration application showing how to create a line chart using
* data from an {@link XYDataset}.

* <p>

* IMPORTANT NOTE: THIS DEMO IS DOCUMENTED IN THE JFREECHART DEVELOPER GUIDE.
* DO NOT MAKE CHANGES WITHOUT UPDATING THE GUIDE ALSO!!

*/

public class LineChartDemo2 extends ApplicationFrame {

/*%
* Creates a new demo.
*
* @param title the frame title.
*/
public LineChartDemo2(String title) {

super(title);

XYDataset dataset = createDataset();

JFreeChart chart = createChart(dataset);

ChartPanel chartPanel = new ChartPanel(chart);
chartPanel.setPreferredSize(new java.awt.Dimension(500, 270));
setContentPane (chartPanel) ;

}

/**
* Creates a sample dataset.
*
* Qreturn a sample dataset.
*/
private static XYDataset createDataset() {
XYSeries seriesl = new XYSeries("First");
seriesl.add(1.0, 1.0)
seriesl.add(2.0, 4.0)

H
i

CHAPTER 7. LINE CHARTS

seriesl.add(3.0, 3.0);
seriesl.add(4.0, 5.0);
seriesl.add(5.0, 5.0);
seriesl.add(6.0, 7.0);
seriesl.add (7.0, 7.0);
seriesl.add(8.0, 8.0);
XYSeries series2 = new XYSeries("Second");
series2.add(1.0, 5.0);
series2.add(2.0, 7.0);
series2.add(3.0, 6.0);
series2.add(4.0, 8.0);
series2.add(5.0, 4.0);
series2.add(6.0, 4.0);
series2.add (7.0, 2.0);
series2.add(8.0, 1.0);
XYSeries series3 = new XYSeries("Third");
series3.add (3.0, 4.0);
series3.add(4.0, 3.0);
series3.add(5.0, 2.0);
series3.add(6.0, 3.0);
series3.add (7.0, 6.0);
series3.add(8.0, 3.0);
series3.add(9.0, 4.0);

series3.add(10.0, 3.0);

XYSeriesCollection dataset = new XYSeriesCollection();
dataset.addSeries(seriesl);
dataset.addSeries(series2);

dataset.addSeries(series3);

return dataset;

* Creates a chart.
*
* Qparam dataset the data for the chart.
*
* Q@return a chart.
*/
private static JFreeChart createChart(XYDataset dataset) {

// create the chart...
JFreeChart chart = ChartFactory‘createXYLineChart(

"Line Chart Demo 2", // chart title
"X, // x axis label
"y, // y axis label
dataset, // data
PlotOrientation.VERTICAL,

true, // include legend
true, // tooltips

false // urls

);

// NOW DO SOME OPTIONAL CUSTOMISATION OF THE CHART...
chart.setBackgroundPaint (Color.white);

// get a reference to the plot for further customisation...
XYPlot plot = (XYPlot) chart.getPlot();
plot.setBackgroundPaint (Color.lightGray) ;
plot.setAxisOffset (new RectanglelInsets(5.0, 5.0, 5.0, 5.0));
plot.setDomainGridlinePaint (Color.white);
plot.setRangeGridlinePaint (Color.white);

XYLineAndShapeRenderer renderer

= (XYLineAndShapeRenderer) plot.getRenderer();
renderer.setShapesVisible(true);
renderer.setShapesFilled(true) ;

// change the auto tick unit selection to integer units only...
NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setStandardTickUnits (NumberAxis.createIntegerTickUnits());
// OPTIONAL CUSTOMISATION COMPLETED.

return chart;

CHAPTER 7. LINE CHARTS

/*%
* Creates a panel for the demo (used by SuperDemo.java).
*
* Q@return A panel.
*/
public static JPanel createDemoPanel() {
JFreeChart chart = createChart(createDataset());
return new ChartPanel(chart);

}

/*%
* Starting point for the demonstration application.
*
* @param args ignored.
*/

public static void main(String[] args) {

LineChartDemo2 demo = new LineChartDemo2("Line Chart Demo 2");
demo.pack() ;

RefineryUtilities.centerFrameOnScreen(demo) ;
demo.setVisible(true);

61

Chapter 8

Time Series Charts

8.1 Introduction

Time series charts are very similar to line charts, except that the values on the domain axis are
dates rather than numbers. This section describes how to create time series charts with JFreeChart.

8.2 Time Series Charts

8.2.1 Overview

A time series chart is really just a line chart using data obtained via the XYDataset interface (see
the example in the previous section). The difference is that the x-values are displayed as dates
on the domain axis. This section presents a sample application that generates the chart shown in
figure 8.1.

(] Time Series Demo 1 O

Legal & General Unit Trust Prices

180 1%
170 { [
160 S L \“‘-\
150 N T
140
130

120 \\/_\\‘\\\/"_‘
., L S
: =

Apr-2001 Jul-2001 Oct-2001 Jan-2002 Apr-2002 Jul-2002
Date

— /I- &
=

Frice Per Unit

“u
N, A
N

|-.—L&G European Index Trust -#-L&C UK Index Trust|

Figure 8.1: A time series chart

The complete source code (TimeSeriesDemol.java) for this example is available for download with
the JFreeChart Developer Guide.

8.2.2 Dates or Numbers?

Time series charts are created using data from an XYDataset. This interface doesn’t have any
methods that return dates, so how does JFreeChart create time series charts?

The x-values returned by the dataset are double primitives, but the values are interpreted in a
special way—they are assumed to represent the number of milliseconds since midnight, 1 January

62

CHAPTER 8. TIME SERIES CHARTS 63

1970 (the encoding used by the java.util.Date class).

A special axis class (DateAxis) converts from milliseconds to dates and back again as necessary,
allowing the axis to display tick labels formatted as dates.

8.2.3 The Dataset

For the demo chart, a TimeSeriesCollection is used as the dataset (you can use any implementation
of the XYDataset interface):

TimeSeries Month.class);
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new

s1 = new TimeSeries("L&G European Index Trust",
Month(2, 2001), 181.8);
Month(3, 2001), 167.3);
Month(4, 2001), 153.8);
Month(5, 2001), 167.6);
Month(6, 2001), 158.8);
Month(7, 2001), 148.3);
Month(8, 2001), 153.9);
Month(9, 2001), 142.7);
Month(10, 2001), 123.2);
Month (11, 2001), 131.8);
Month (12, 2001), 139.6);
Month(1, 2002), 142.9);
Month(2, 2002), 138.7);
Month(3, 2002), 137.3);
Month (4, 2002), 143.9);
Month(5, 2002), 139.8);
Month(6, 2002), 137.0);
Month (7, 2002), 132.8);

TimeSeries s2 = new TimeSeries("L&G UK Index Trust", Month.class);

s2.add(new
s2.add (new
s2.add(new
s2.add(new
s2.add(new
s2.add(new
s2.add (new
s2.add(new

Month(2, 2001), 129.
Month(3, 2001), 123.
Month(4, 2001), 117.
Month(5, 2001), 124.
Month(6, 2001), 122.
Month (7, 2001), 119.
Month(8, 2001), 116.
Month(9, 2001), 112.

6);
2);
2);
1);
6);
2);
5);
7);

s2.add(new
s2.add(new
s2.add(new

Month(10, 2001), 101.5);
Month(11, 2001), 106.1);
Month(12, 2001), 110.3);

s2.add (new
s2.add(new
s2.add(new
s2.add(new
s2.add(new
s2.add(new
s2.add(new

Month(1, 2002), 111
Month(2, 2002), 111.
Month(3, 2002), 109.
Month(4, 2002), 113.
Month(5, 2002), 111
Month(6, 2002), 108.
Month (7, 2002), 101.

TimeSeriesCollection dataset
dataset.addSeries(s1);
dataset.addSeries(s2);

.75

0);
6);
2);

.6);

8);
6);

new TimeSeriesCollection();

In the example, the series contain monthly data. However, the TimeSeries class can be used to
represent values observed at other intervals (annual, daily, hourly etc).

8.2.4 Constructing the Chart

The createTimeSeriesChart () method in the ChartFactory class provides a convenient way to create
the chart:

JFreeChart chart = ChartFactory.createTimeSeriesChart(
"Legal & General Unit Trust Prices", // title

"Date", // x-axis label
"Price Per Unit", // y-axis label
dataset, // data

true, // create legend?
true, // generate tooltips?
false // generate URLs?

)

This method constructs a JFreeChart object with a title, legend and plot with appropriate axes and
renderer. The dataset is the one created in the previous section.

CHAPTER 8. TIME SERIES CHARTS 64

8.2.5 Customising the Chart

The chart will be initialised using default settings for most attributes. You are, of course, free
to modify any of the settings to change the appearance of your chart. In this example, several
attributes are modified:

e the renderer is changed to display series shapes at each data point, in addition to the lines
between data points;

e a date format override is set for the domain axis;

Modifying the renderer requires a couple of steps to obtain a reference to the renderer and then
cast it to a XYLineAndShapeRenderer:

XYItemRenderer r = plot.getRenderer();

if (r instanceof XYLineAndShapeRenderer) {
XYLineAndShapeRenderer renderer = (XYLineAndShapeRenderer) r;
renderer.setBaseShapesVisible(true) ;
renderer.setBaseShapesFilled(true);

In the final customisation, a date format override is set for the domain axis.

DateAxis axis = (DateAxis) plot.getDomainAxis();
axis.setDateFormatOverride (new SimpleDateFormat ("MMM-yyyy"));

When this is set, the axis will continue to “auto-select” a DateTickUnit from the collection of
standard tick units, but it will ignore the formatting from the tick unit and use the override format
instead.

8.2.6 The Complete Program

The code for the demonstration application is presented in full, complete with the import state-
ments:

/*
* TimeSeriesDemo. java
*
* (C) Copyright 2002-2005, by Object Refinery Limited.
*

*/

package demo;

import java.awt.Color;
import java.text.SimpleDateFormat;

import javax.swing.JPanel;

import org.jfree.chart.ChartFactory;

import org.jfree.chart.ChartPanel;

import org.jfree.chart.JFreeChart;

import org.jfree.chart.axis.DateAxis;

import org.jfree.chart.plot.XYPlot;

import org.jfree.chart.renderer.xy.XYItemRenderer;
import org.jfree.chart.renderer.xy.XYLineAndShapeRenderer;
import org.jfree.data.time.Month;

import org.jfree.data.time.TimeSeries;

import org.jfree.data.time.TimeSeriesCollection;
import org.jfree.data.xy.XYDataset;

import org.jfree.ui.ApplicationFrame;

import org.jfree.ui.Rectanglelnsets;

import org.jfree.ui.RefineryUtilities;

/%%
* An example of a time series chart. For the most part, default settings are

CHAPTER 8. TIME SERIES CHARTS

<p>

* ¥ ¥ ¥ *

*/

used, except that the renderer is modified to show filled shapes (as well as
lines) at each data point.

IMPORTANT NOTE: THIS DEMO IS DOCUMENTED IN THE JFREECHART DEVELOPER GUIDE.
DO NOT MAKE CHANGES WITHOUT UPDATING THE GUIDE ALSO!!

public class TimeSeriesDemol extends ApplicationFrame {

/**

* A demonstration application showing how to create a simple time series

*
*

chart. This example uses monthly data.

* Q@param title the frame title.

*/

public TimeSeriesDemol(String title) {

*/

super (title);

XYDataset dataset = createDataset();

JFreeChart chart = createChart(dataset);

ChartPanel chartPanel = new ChartPanel(chart);
chartPanel.setPreferredSize(new java.awt.Dimension(500, 270));
chartPanel.setMouseZoomable (true, false);

setContentPane (chartPanel) ;

Creates a chart.
Q@param dataset a dataset.

Q@return A chart.

private static JFreeChart createChart(XYDataset dataset) {

/*%

JFreeChart chart = ChartFactory.createTimeSeriesChart (
"Legal & General Unit Trust Prices", // title

"Date", // x-axis label
"Price Per Unit", // y-axis label
dataset, // data

true, // create legend?
true, // generate tooltips?
false // generate URLs?

);
chart.setBackgroundPaint (Color.white) ;

XYPlot plot = (XYPlot) chart.getPlot();
plot.setBackgroundPaint (Color.lightGray) ;
plot.setDomainGridlinePaint (Color.white);
plot.setRangeGridlinePaint (Color.white);
plot.setAxisOffset (new RectangleInsets(5.0, 5.0, 5.0, 5.0));
plot.setDomainCrosshairVisible(true);
plot.setRangeCrosshairVisible(true);

XYItemRenderer r = plot.getRenderer();

if (r instanceof XYLineAndShapeRenderer) {
XYLineAndShapeRenderer renderer = (XYLineAndShapeRenderer) r;
renderer.setBaseShapesVisible(true);
renderer.setBaseShapesFilled(true) ;

}

DateAxis axis = (DateAxis) plot.getDomainAxis();
axis.setDateFormatOverride(new SimpleDateFormat ("MMM-yyyy"));

return chart;

65

CHAPTER 8. TIME SERIES CHARTS

* Creates a dataset, consisting of two series of monthly data.
*

* Q@return the dataset.

*/

private static XYDataset createDataset() {

TimeSeries sl = new TimeSeries("L&G European Index Trust", Month.class);
sl.add(new Month(2, 2001), 181.8);
s1.add(new Month(3, 2001), 167.3);
sl.add(new Month(4, 2001), 153.8);
s1.add(new Month(5, 2001), 167.6);
s1.add(new Month(6, 2001), 158.8);
sl1.add(new Month(7, 2001), 148.3);
s1.add(new Month(8, 2001), 153.9);
sl.add(new Month(9, 2001), 142.7);
s1.add(new Month(10, 2001), 123.2);
sl.add(new Month(11, 2001), 131.8);
s1.add(new Month(12, 2001), 139.6);
s1.add(new Month(1, 2002), 142.9);
sl1.add(new Month(2, 2002), 138.7);
s1.add(new Month(3, 2002), 137.3);
sl.add(new Month(4, 2002), 143.9);
s1.add(new Month(5, 2002), 139.8);
sl.add(new Month(6, 2002), 137.0);
s1.add(new Month(7, 2002), 132.8);

TimeSeries s2 = new TimeSeries("L&G UK Index Trust", Month.class);
s2.add(new Month(2, 2001), 129.6);
s2.add(new Month(3, 2001), 123.2);
s2.add(new Month(4, 2001), 117.2);
s2.add(new Month(5, 2001), 124.1);
s2.add(new Month(6, 2001), 122.6);
s2.add(new Month(7, 2001), 119.2);
s2.add(new Month(8, 2001), 116.5);
s2.add(new Month(9, 2001), 112.7);
s2.add(new Month(10, 2001), 101.5);
s2.add(new Month(11, 2001), 106.1);
s2.add(new Month(12, 2001), 110.3);
s2.add(new Month(1, 2002), 111.7);
s2.add(new Month(2, 2002), 111.0);
s2.add(new Month(3, 2002), 109.6);
s2.add(new Month(4, 2002), 113.2);
s2.add(new Month(5, 2002), 111.6);
s2.add(new Month(6, 2002), 108.8);
s2.add(new Month(7, 2002), 101.6);

TimeSeriesCollection dataset = new TimeSeriesCollection();
dataset.addSeries(sl);
dataset.addSeries(s2);

dataset.setDomainIsPointsInTime (true);

return dataset;

}

/xx
* Creates a panel for the demo (used by SuperDemo.java).
*
* Q@return A panel.
*/
public static JPanel createDemoPanel() {
JFreeChart chart = createChart(createDataset());
return new ChartPanel(chart);

}

/*x
* Starting point for the demonstration application.

CHAPTER 8. TIME SERIES CHARTS

*
* Qparam args ignored.
*/

public static void main(String[] args) {

TimeSeriesDemol demo = new TimeSeriesDemol("Time Series Demo 1");
demo.pack() ;

RefineryUtilities.centerFrameOnScreen(demo) ;
demo.setVisible(true);

67

Chapter 9

Customising Charts

9.1 Introduction

JFreeChart has been designed to be highly customisable. There are many attributes that you can
set to change the default appearance of your charts. In this section, some common techniques for
customising charts are presented.

9.2 Chart Attributes

9.2.1 Overview

At the highest level, you can customise the appearance of your charts using methods in the
JFreeChart class. This allows you to control:

the chart border;

the chart title and sub-titles;

the background color and/or image;

the rendering hints that are used to draw the chart, including whether or not anti-aliasing is
used;

These items are described in the following sections.

9.2.2 The Chart Border

JFreeChart can draw a border around the outside of a chart. By default, no border is drawn, but
you can change this using the setBorderVisible() method. The color and line-style for the border
are controlled by the setBorderPaint() and setBorderStroke() methods.

Note: if you are displaying your chart inside a ChartPanel, then you might prefer to use the border
facilities provided by Swing.

9.2.3 The Chart Title

A chart has one title that can appear at the top, bottom, left or right of the chart (you can also add
subtitles—see the next section). The title is an instance of TextTitle. You can obtain a reference
to the title using the getTitle() method:

TextTitle title = chart.getTitle();

To modify the title text (without changing the font or position):

68

CHAPTER 9. CUSTOMISING CHARTS 69

chart.setTitle("A Chart Title");

The placement of the title at the top, bottom, left or right of the chart is controlled by a property
of the title itself. To move the title to the bottom of the chart:

chart.getTitle() .setPosition(RectangleEdge.BOTTOM) ;
If you prefer to have no title on your chart, you can set the title to null.

9.2.4 Subtitles

A chart can have any number of subtitles. To add a sub-title to a chart, create a subtitle (any
subclass of Title) and add it to the chart. For example:

TextTitle subtitlel = new TextTitle("A Subtitle");
chart.addSubtitle(subtitlel);

You can add as many sub-titles as you like to a chart, but keep in mind that as you add more
sub-titles there will be less and less space available for drawing the chart.

To modify an existing sub-title, you need to get a reference to the sub-title. For example:

Title subtitle = chart.getSubtitle(0);

You will need to cast the Title reference to an appropriate subclass before you can change its
properties.

You can check the number of sub-titles using the getSubtitleCount () method.

9.2.5 Setting the Background Color
You can use the setBackgroundPaint () method to set the background color for a chart.! For example:

chart.setBackgroundPaint(Color.blue);

You can use any implementation of the Paint interface, including the Java classes Color, GradientPaint
and TexturePaint. For example:

Paint p = new GradientPaint(0, O, Color.white, 1000, 0, Color.green));
chart.setBackgroundPaint (p) ;

You can also set the background paint to null, which is recommended if you have specified a
background image for your chart.

9.2.6 Using a Background Image

You can use the setBackgroundImage () method to set a background image for a chart.
chart.setBackgroundImage (JFreeChart.INFO.getLogo());

By default, the image will be scaled to fit the area that the chart is being drawn into, but you can

change this using the setBackgroundImageAlignment () method.

chart.setBackgroundImageAlignment (Align.TOP_LEFT) ;

Using the setBackgroundImageAlpha() method, you can control the alpha-transparency for the image.

If you want an image to fill only the data area of your chart (that is, the area inside the axes), then
you need to add a background image to the chart’s Plot (described later).

You can also set the background color for the chart’s plot area, which has a slightly different effect—refer to the
Plot class for details.

CHAPTER 9. CUSTOMISING CHARTS 70

9.2.7 Rendering Hints
JFreeChart uses the Java2D API to draw charts. Within this API, you can specify rendering hints
to fine tune aspects of the way that the rendering engine works.

JFreeChart allows you to specify the rendering hints to be passed to the Java2D API when charts
are drawn—use the setRenderingHints() method.

As a convenience, a method is provided to turn anti-aliasing on or off. With anti-aliasing on, charts
appear to be smoother but they take longer to draw:

// turn on antialiasing...
chart.setAntiAlias(true);

By default, charts are drawn with anti-aliasing turned on.

9.3 Plot Attributes

9.3.1 Overview

The JFreeChart class delegates a lot of the work in drawing a chart to the Plot class (or, rather, to
a specific subclass of Plot). The getPlot() method in the JFreeChart class returns a reference to
the plot being used by the chart.

Plot plot = chart.getPlot();

You may need to cast this reference to a specific subclass of Plot, for example:
CategoryPlot plot = chart.getCategoryPlot();

...0r:
XYPlot plot = chart.getXYPlot();

Note that these methods will throw a ClassCastException if the plot is not an appropriate class.

9.3.2 Which Plot Subclass?

How do you know which subclass of Plot is being used by a chart? As you gain experience with
JFreeChart, it will become clear which charts use CategoryPlot and which charts use XYPlot. If in
doubt, take a look in the ChartFactory class source code to see how each chart type is put together.

9.3.3 Setting the Background Paint

You can use the setBackgroundPaint () method to set the background color for a plot. For example:

Plot plot = chart.getPlot();
plot.setBackgroundPaint (Color.white);

You can use any implementation of the Paint interface, including the Java classes Color, GradientPaint
and TexturePaint. You can also set the background paint to null.

9.3.4 Using a Background Image

You can use the setBackgroundImage () method to set a background image for a plot:

Plot plot = chart.getPlot();
plot.setBackgroundImage (JFreeChart.INFO.getLogo());

By default, the image will be scaled to fit the area that the plot is being drawn into. You can
change this using the setBackgroundImageAlignment () method:

plot.setBackgroundImageAlignment (Align.BOTTOM_RIGHT) ;
Use the setBackgroundAlpha() method to control the alpha-transparency used for the image.

If you prefer your image to fill the entire chart area, then you need to add a background image to
the JFreeChart object (described previously).

CHAPTER 9. CUSTOMISING CHARTS 71

9.4 Axis Attributes

9.4.1 Overview

The majority of charts created with JFreeChart have two axes, a domain azris and a range axis.
Of course, there are some charts (for example, pie charts) that don’t have axes at all. For charts
where axes are used, the Axis objects are managed by the plot.

9.4.2 Obtaining an Axis Reference

Before you can change the properties of an axis, you need to obtain a reference to the axis. The
plot classes CategoryPlot and XYPlot both have methods getDomainAxis() and getRangeAxis().

These methods return a reference to a ValueAxis, except in the case of the CategoryPlot, where the
domain axis is an instance of CategoryAxis.
// get an axis reference...

CategoryPlot plot = chart.getCategoryPlot();
CategoryAxis domainAxis = plot.getDomainAxis();

// change axis properties...
domainAxis.setLabel("Categories");
domainAxis.setLabelFont (someFont) ;

There are many different subclasses of the CategoryAxis and ValueAxis classes. Sometimes you will
need to cast your axis reference to a more specific subclass, in order to access some of its attributes.
For example, if you know that your range axis is a NumberAxis (and the range axis almost always
is), then you can do the following:

XYPlot plot = chart.getXYPlot();
NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setAutoRange(false);

9.4.3 Setting the Axis Label
You can use the setLabel() method to change the axis label. If you would prefer not to have a
label for your axis, just set it to null.

You can change the font, color and insets (the space around the outside of the label) with the
methods setLabelFont (), setLabelPaint(), and setLabelInsets(), defined in the Axis class.

9.4.4 Rotating Axis Labels

When an axis is drawn at the left or right of a plot (a “vertical” axis), the label is automati-
cally rotated by 90 degrees to minimise the space required. If you prefer to have the label drawn
horizontally, you can change the label angle:

XYPlot plot = chart.getXYPlot();
ValueAxis axis = plot.getRangeAxis();
axis.setLabelAngle(Math.PI / 2.0);

Note that the angle is specified in radians (Math.PI = 180 degrees).

9.4.5 Hiding Tick Labels

To hide the tick labels for an axis:

CategoryPlot plot = chart.getCategoryPlot();
ValueAxis axis = plot.getRangeAxis();
axis.setTickLabelsVisible(false);

For a CategoryAxis, setTickLabelsVisible(false) will hide the category labels.

CHAPTER 9. CUSTOMISING CHARTS 72

9.4.6 Hiding Tick Marks

To hide the tick marks for an axis:

XYPlot plot = chart.getXYPlot();
Axis axis = plot.getDomainAxis();
axis.setTickMarksVisible(false);

Category axes do not have tick marks.

9.4.7 Setting the Tick Size

By default, numerical and date axes automatically select a tick size so that the tick labels will not
overlap. You can override this by setting your own tick unit using the setTickUnit() method.

Alternatively, for a NumberAxis or a DateAxis you can specify your own set of tick units from which
the axis will automatically select an appropriate tick size. This is described in the following sections.

9.4.8 Specifying “Standard” Number Tick Units

In the NumberAxis class, there is a method setStandardTickUnits() that allows you to supply your
own set of tick units for the “auto tick unit selection” mechanism.

One common application is where you have a number axis that should only display integers. In this
case, you don’t want tick units of (say) 0.5 or 0.25. There is a (static) method in the NumberAxis
class that returns a set of standard integer tick units:

XYPlot plot = chart.getXYPlot();

NumberAxis axis = (NumberAxis) plot.getRangeAxis();

TickUnitSource units = NumberAxis.createIntegerTickUnits();
axis.setStandardTickUnits(units);

You are free to create your own TickUnits collection, if you want greater control over the standard
tick units.

9.4.9 Specifying “Standard” Date Tick Units

Similar to the case in the previous section, the DateAxis class has a method setStandardTickUnits ()
that allows you to supply your own set of tick units for the “auto tick unit selection” mechanism.

The createStandardDateTickUnits() method returns the default collection for a DateAxis, but you
are free to create your own TickUnits collection if you want greater control over the standard tick
units.

Chapter 10

Dynamic Charts

10.1 Overview

To illustrate the use of JFreeChart for creating “dynamic” charts, this section presents a sample
application that displays a frequently updating chart of JVM memory usage and availability.

[JMemoryUsage Demo O
JVM Memory Usage

2,000,000 1]
1,500,000

1,000,000

4]

17:26:15 17:26:20 17:26:25 17:26:30 17:26:35 17:26:40
Time

Memaory

| == Total Memory ==Free rule|11ory|

Figure 10.1: A dynamic chart demo

10.2 Background

10.2.1 Event notification

JFreeChart uses an event notification mechanism that allows it to respond to changes to any com-
ponent of the chart. For example, whenever a dataset is updated, a DatasetChangeEvent is sent to
all listeners that are registered with the dataset. This triggers the following sequence of events:

e the plot (which registers itself with the dataset as a DatasetChangeListener) receives noti-
fication of the dataset change. It updates the axis ranges (if necessary) then passes on a
PlotChangeEvent to all its registered listeners;

e the chart receives notification of the plot change event, and passes on a ChartChangeEvent to
all its registered listeners;

e finally, for charts that are displayed in a ChartPanel, the panel will receive the chart change
event. It responds by redrawing the chart—a complete redraw, not just the updated data.

A similar sequence of events happens for all changes to a chart or its subcomponents.

73

CHAPTER 10. DYNAMIC CHARTS 74

10.2.2 Performance

Regarding performance, you need to be aware that JFreeChart wasn’t designed specifically for
generating real-time charts. Each time a dataset is updated, the ChartPanel reacts by redrawing
the entire chart. Optimisations, such as only drawing the most recently added data point, are
difficult to implement in the general case, even more so given the Graphics2D abstraction (in the
Java2D API) employed by JFreeChart. This limits the number of “frames per second” you will be
able to achieve with JFreeChart. Whether this will be an issue for you depends on your data, the
requirements of your application, and your operating environment.

10.3 The Demo Application

10.3.1 Overview

The MemoryUsageDemo.java demonstration is included in the JFreeChart demo collection (source
code available to purchasers of this guide). You can obtain this from:

http://wuw.object-refinery.com/jfreechart/premium/index.html

You will need to enter the username and password supplied with your original purchase of the
JFreeChart Developer Guide.

10.3.2 Creating the Dataset

The dataset is created using two TimeSeries objects (one for the total memory and the other for
the free memory) that are added to a single time series collection:

// create two series that automatically discard data > 30 seconds old...
this.total = new TimeSeries("Total", Millisecond.class);
this.total.setMaximumItemAge (30000) ;

this.free = new TimeSeries("Free", Millisecond.class);
this.free.setMaximumItemAge (30000) ;

TimeSeriesCollection dataset = new TimeSeriesCollection();
dataset.addSeries(this.total);

dataset.addSeries(this.free);

The maximumItemAge attribute for each time series is set to 30,000 milliseconds (or 30 seconds) so
that whenever new data is added to the series, any observations that are older that 30 seconds are
automatically discarded.

10.3.3 Creating the Chart

The chart creation (and customisation) follows the standard pattern for all charts. No special steps
are required to create a dynamic chart, except that you should ensure that the axes have their
autoRange attribute set to true. It also helps to retain a reference to the dataset used in the chart.

10.3.4 Updating the Dataset

In the demo, the dataset is updated by adding data to the two time series from a separate thread,
managed by the following timer:

class DataGenerator extends Timer implements ActionListener {

DataGenerator(int interval) {
super (interval, null);
addActionListener (this);

}

public void actionPerformed(ActionEvent event) {
long f = Runtime.getRuntime().freeMemory();
long t = Runtime.getRuntime().totalMemory();
addTotalObservation(t);
addFreeObservation(f) ;

CHAPTER 10. DYNAMIC CHARTS

Note that JEreeChart does not yet use thread synchronisation between the chart drawing code and
the dataset update code, so this approach is a little unsafe.

One other point to note, at one point while investigating reports of a memory leak in JFreeChart, I
left this demo running on a test machine for about six days. As the chart updates, you can see the
effect of the garbage collector. Owver the six day period, the total memory used remained constant
while the free memory decreased as JFreeChart discarded temporary objects (garbage), and increased
at the points where the garbage collector did its work.

10.3.5 Source Code

For reference, here is the complete source code for the example:

/*

* MemoryUsageDemo. java

*

* (C) Copyright 2002-2006, by Object Refinery Limited.

*/

package demo;

import
import
import
import
import
import
import
import

import
import
import
import

import
import
import
import
import
import
import
import
import
import
import

VLS

<p>

* ¥ ¥ ¥ X

*/

java.
java.
java.
java.
java.
java.
java.
java.

java:
Jjava:
Jjava:
Jjava:

org.
org.
org
org.
org.
org.
org.
org
org.
org.
org

awt
awt
awt
awt
awt
awt
awt
awt

X.
X.
X
X

jfree.
.chart.

jfree

.jfree

jfree

jfree.

jfree
jfree

.jfree

jfree
jfree

.jfree

IMPORTANT NOTE:

.Basic$S
.Border
.Color;
.Font;

.event.
.event.
.event.
.event.

chart

.chart
.chart
chart
.chart
.chart
.data.
.data.
.data.
.ui.Re

troke;
Layout;

ActionEvent;
ActionListener;
WindowAdapter;
WindowEvent;

swing.BorderFactory;
swing.JFrame;
.swing.JPanel;
.swing.Timer;

.ChartPanel;

JFreeChart;

.axis.DateAxis;
.axis.NumberAxis;
.plot.XYPlot;
.renderer.xy.XYItemRenderer;
.renderer.xy.XYLineAndShapeRenderer;
time.Millisecond;
time.TimeSeries;
time.TimeSeriesCollection;
ctangleInsets;

A demo application showing a dynamically updated chart that displays the
current JVM memory usage.

THIS DEMO IS DOCUMENTED IN THE JFREECHART DEVELOPER GUIDE.
DO NOT MAKE CHANGES WITHOUT UPDATING THE GUIDE ALSO!!

public class MemoryUsageDemo extends JPanel {

/*x Time series for total memory used. */
private TimeSeries total;

/*x Time series for free memory . */
private TimeSeries free;

/%%

* Creates a new application.

*

* @param maxAge

*/

the maximum age (in milliseconds).

public MemoryUsageDemo(int maxAge) {

super (new BorderLayout());

// create two series that automatically discard data more than 30

CHAPTER 10. DYNAMIC CHARTS

// seconds old...

this.total = new TimeSeries("Total Memory", Millisecond.class);
this.total.setMaximumItemAge (maxAge) ;

this.free = new TimeSeries("Free Memory", Millisecond.class);
this.free.setMaximumItemAge (maxAge) ;

TimeSeriesCollection dataset = new TimeSeriesCollection();
dataset.addSeries(this.total);

dataset.addSeries(this.free);

DateAxis domain = new DateAxis("Time");

NumberAxis range = new NumberAxis("Memory");
domain.setTickLabelFont (new Font("SansSerif", Font.PLAIN, 12));
range.setTickLabelFont (new Font("SansSerif", Font.PLAIN, 12));
domain.setLabelFont (new Font("SansSerif", Font.PLAIN, 14));
range.setLabelFont (new Font("SansSerif", Font.PLAIN, 14));

XYItemRenderer renderer = new XYLineAndShapeRenderer(true, false);
renderer.setSeriesPaint (0, Color.red);
renderer.setSeriesPaint (1, Color.green);
renderer.setStroke (new BasicStroke(3f, BasicStroke.CAP_BUTT,
BasicStroke.JOIN_BEVEL));
XYPlot plot = new XYPlot(dataset, domain, range, renderer);
plot.setBackgroundPaint (Color.lightGray) ;
plot.setDomainGridlinePaint (Color.white);
plot.setRangeGridlinePaint (Color.white);
plot.setAxisOffset (new RectanglelInsets(5.0, 5.0, 5.0, 5.0));
domain.setAutoRange (true) ;
domain.setLowerMargin(0.0);
domain.setUpperMargin(0.0);
domain.setTickLabelsVisible(true);

range.setStandardTickUnits (NumberAxis.createIntegerTickUnits());

JFreeChart chart = new JFreeChart("JVM Memory Usage",
new Font("SansSerif", Font.BOLD, 24), plot, true);
chart.setBackgroundPaint (Color.white) ;
ChartPanel chartPanel = new ChartPanel(chart);
chartPanel.setBorder (BorderFactory.createCompoundBorder (
BorderFactory.createEmptyBorder (4, 4, 4, 4),
BorderFactory.createLineBorder (Color.black)));
add (chartPanel) ;

}

/**
* Adds an observation to the ’total memory’ time series.
*
* @param y the total memory used.
*/
private void addTotalObservation(double y) {
this.total.add(new Millisecond(), y);
}

/*%
* Adds an observation to the ’free memory’ time series.
*
* @param y the free memory.
*/
private void addFreeObservation(double y) {
this.free.add(new Millisecond(), y);
}

/*%
* The data generator.
*/

class DataGenerator extends Timer implements ActionListener {

/*%
* Constructor.
*
* @param interval the interval (in milliseconds)
*/
DataGenerator(int interval) {
super (interval, null);
addActionListener (this);
}

/*%
* Adds a new free/total memory reading to the dataset.
*

* Q@param event the action event.

76

CHAPTER 10. DYNAMIC CHARTS

*/
public void actionPerformed(ActionEvent event) {
long f = Runtime.getRuntime().freeMemory();
long t = Runtime.getRuntime().totalMemory();
addTotalObservation(t);
addFreeObservation(f);

}

/*%
* Entry point for the sample application.
*
* @param args ignored.
*/

public static void main(String[] args) {

JFrame frame = new JFrame("Memory Usage Demo");
MemoryUsageDemo panel = new MemoryUsageDemo(30000) ;
frame.getContentPane () .add(panel, BorderLayout.CENTER);
frame.setBounds (200, 120, 600, 280);
frame.setVisible(true);

panel.new DataGenerator(100).start();

frame.addWindowListener (new WindowAdapter() {
public void windowClosing(WindowEvent e) {
System.exit(0);
}
b

T

Chapter 11

Tooltips

11.1 Overview

JFreeChart includes mechanisms for generating, collecting and displaying tool tips for individual
components of a chart.

In this section, I describe:

e how to generate tool tips (including customisation of tool tips);
e how tool tips are collected;
e how to display tool tips;

e how to disable tool tips if you don’t need them;

11.2 Generating Tool Tips
If you want to use tool tips, you need to make sure they are generated as your chart is being drawn.
You do this by setting a tool tip generator for your plot or, in many cases, the plot’s item renderer.

In the sub-sections that follow, I describe how to set a tool tip generator for the common chart
types.

11.2.1 Pie Charts

The PiePlot class generates tool tips using the PieToolTipGenerator interface. A standard imple-
mentation (StandardPieToolTipGenerator) is provided, and you are free to create your own imple-
mentations.

To set the tool tip generator, use the following method in the PiePlot class:

= public void setToolTipGenerator (PieToolTipGenerator generator);
Sets the tool tip generator for the pie chart. If you set this to null, no tool tips will be
generated.

11.2.2 Category Charts

Category charts—including most of the bar charts generated by JFreeChart—are based on the
CategoryPlot class and use a CategoryItemRenderer to draw each data item. The CategoryToolTipGenerator
interface specifies the method via which the renderer will obtain tool tips (if required).

To set the tool tip generator for a category plot’s item renderer, use the following method (defined
in the AbstractCategoryItemRenderer class):

78

CHAPTER 11. TOOLTIPS 79

= public void setToolTipGenerator(CategoryToolTipGenerator generator);
Sets the tool tip generator for the renderer. If you set this to null, no tool tips will be generated.

11.2.3 XY Charts

XY charts—including scatter plots and all the time series charts generated by JFreeChart—are
based on the XYPlot class and use an XYItemRenderer to draw each data item. The renderer generates
tool tips (if required) using an XYToolTipGenerator.

To set the tool tip generator for an XY plot’s item renderer, use the following method (defined in
the AbstractXYItemRenderer C]ass):

= public void setToolTipGenerator (XYToolTipGenerator generator);
Sets the tool tip generator for the renderer. If you set this to null, no tool tips will be generated.

11.3 Collecting Tool Tips

Tool tips are collected, along with other chart entity information, using the ChartRenderingInfo
class. You need to supply an instance of this class to JFreeChart’s draw() method, otherwise no
tool tip information will be recorded (even if a generator has been registered with the plot or the
plot’s item renderer, as described in the previous sections).

Fortunately, the ChartPanel class takes care of this automatically, so if you are displaying your
charts using the ChartPanel class you do not need to worry about how tool tips are collected—it is
done for you.

11.4 Displaying Tool Tips

Tool tips are automatically displayed by the ChartPanel class, provided that you have set up a tool
tip generator for the plot (or the plot’s renderer).

You can also enable or disable the display of tool tips in the ChartPanel class, using this method:

= public void setDisplayToolTips(boolean flag);
Switches the display of tool tips on or off.

11.5 Disabling Tool Tips

The most effective way to disable tool tips is to set the tool tip generator to null. This ensures that
no tool tip information is even generated, which can save memory and processing time (particularly
for charts with large datasets).

You can also disable the display of tool tips in the ChartPanel class, using the method given in the
previous section.

11.6 Customising Tool Tips

You can take full control of the text generated for each tool tip by providing your own implemen-
tation of the appropriate tool tip generator interface.

Chapter 12

Item Labels

12.1 Introduction

12.1.1 Overview

For many chart types, JFreeChart will allow you to display item labels in, on or near to each data
item in a chart. For example, you can display the actual value represented by the bars in a bar
chart—see figure 12.1.

Item Label Demo 1

Walue
L= R Y R T I = T - B Y]

Category

Figure 12.1: A bar chart with item labels

This chapter covers how to:
e make item labels visible (for the chart types that support item labels);
e change the appearance (font and color) of item labels;
e specify the location of item labels;
e customise the item label text.

A word of advice: use this feature sparingly. Charts are supposed to summarise your data—if you
feel it is necessary to display the actual data values all over your chart, then perhaps your data is
better presented in a table format.

80

CHAPTER 12. ITEM LABELS 81

12.1.2 Limitations
There are some limitations with respect to the item labels in the current release of JFreeChart:
e some renderers do not support item labels;

e axis ranges are not automatically adjusted to take into account the item labels—some labels
may disappear off the chart if sufficient margins are not set (use the setUpperMargin() and/or
setLowerMargin() methods in the relevant axis to adjust this).

In future releases of JFreeChart, some or all of these limitations will be addressed.

12.2 Displaying Item Labels

12.2.1 Overview

Item labels are not visible by default, so you need to configure the renderer to create and display
them. This involves two steps:

e assign a CategoryItemLabelGenerator or XYItemLabelGenerator to the renderer—this is an ob-
ject that assumes responsibility for creating the labels;

e set a flag in the renderer to make the labels visible, either for all series or, if you prefer, on a
per series basis.

In addition, you have the option to customise the position, font and color of the item labels. These
steps are detailed in the following sections.

12.2.2 Assigning a Label Generator

Item labels are created by a label generator that is assigned to a renderer (the same mechanism is
also used for tooltips).

To assign a generator to a CategoryItemRenderer, use the following code:

CategoryltemRenderer renderer = plot.getRenderer();

CategoryIltemLabelGenerator generator = new StandardCategoryItemLabelGenerator (
"{2}", new DecimalFormat("0.00"));

renderer.setLabelGenerator(generator);

Similarly, to assign a generator to an XYItemRenderer, use the following code:

XYItemRenderer renderer = plot.getRenderer();

XYItemLabelGenerator generator = new StandardXYItemLabelGenerator (
"{2}", new DecimalFormat("0.00"));

renderer.setLabelGenerator (generator) ;

You can customise the behaviour of the standard generator via settings that you can apply in the
constructor, or you can create your own generator as described in section 12.5.2.

12.2.3 Making Labels Visible For All Series

The setItemLabelsVisible() method sets a flag that controls whether or not the item labels are
displayed (note that a label generator must be assigned to the renderer, or there will be no labels
to display). For a CategoryItemRenderer:

CategoryIltemRenderer renderer = plot.getRenderer();
renderer.setItemLabelsVisible(true);

Similarly, for a XYItemRenderer:

XYItemRenderer renderer = plot.getRenderer();
renderer.setItemLabelsVisible(true);

Once set, this flag takes precedence over any per series settings you may have made elsewhere. In
order for the per series settings to apply, you need to set this flag to null (see section 12.2.4).

CHAPTER 12. ITEM LABELS 82

12.2.4 Making Labels Visible For Selected Series

If you prefer, you can set flags that control the visibility of the item labels on a per series basis.
For example, item labels are displayed only for the first series in figure 12.2.

I —. =

Item Label Demo 2

Value
L= P T - T Y - R Y-

Category

Figure 12.2: Item labels for selected series only

You can use code similar to the following:

CategoryItemRenderer renderer = plot.getRenderer();
renderer.setItemLabelsVisible(null); // clears the ALL series flag
renderer.setSeriesItemLabelsVisible (0, true);
renderer.setSeriesItemLabelsVisible(1, false);

Notice that the flag for “all series” has been set to null—this is important, because the “all series”
flag takes precedence over the “per series” flags.

12.2.5 Troubleshooting

If, after following the steps outlined in the previous sections, you still can’t see any labels on your
chart, there are a couple of things to consider:

e the renderer must have a label generator assigned to it—this is an object that creates the text
items that are used for each label.

e some renderers don’t yet support the display of item labels (refer to the documentation for
the renderer you are using).

12.3 Item Label Appearance

12.3.1 Overview

You can change the appearance of the item labels by changing the font and/or the color used to
display the labels. As for most other renderer attributes, the settings can be made once for all
series, or on a per series basis.

In the current release of JFreeChart, labels are drawn with a transparent background.
You cannot set a background color for the labels, nor can you specify that a border be
drawn around the labels. This may change in the future.

CHAPTER 12. ITEM LABELS 83

12.3.2 Changing the Label Font

To change the font for the item labels in all series, you can use code similar to the following:

CategoryltemRenderer renderer = plot.getRenderer();
renderer.setItemLabelFont (new Font("SansSerif", Font.PLAIN, 10));

Similarly, to set the font for individual series:

CategoryItemRenderer renderer = plot.getRenderer();

// clear the settings for ALL series...
renderer.setItemlLabelFont (null);

// add settings for individual series...
renderer.setSeriesItemLabelFont (0, new Font("SansSerif", Font.PLAIN, 10));
renderer.setSeruesItemLabelFont (1, new Font("SansSerif", Font.BOLD, 10));

Notice how the font for all series has be set to null to prevent it from overriding the per series
settings.

12.3.3 Changing the Label Color

To change the color for the item labels in all series, you can use code similar to the following:

CategoryltemRenderer renderer = plot.getRenderer();
renderer.setItemLabelPaint (Color.red);

Similarly, to set the color for individual series:

CategoryltemRenderer renderer = plot.getRenderer();

// clear the settings for ALL series...
renderer.setItemLabelPaint (null);

// add settings for individual series...

renderer.setSeriesItemLabelPaint (0, Color.red);
renderer.setSeriesItemLabelPaint (1, Color.blue);

Once again, notice how the paint for all series has been set to null to prevent it from overriding
the per series settings.

12.4 TItem Label Positioning

12.4.1 Overview

The positioning of item labels is controlled by four attributes that are combined into an ItemLabelPosition
object. You can define label positions for items with positive and negative values independently,
via the following methods in the CategoryItemRenderer interface:

public void setPositiveItemLabelPosition(ItemLabelPosition position);
public void setNegativeItemLabelPosition(ItemLabelPosition position);

Understanding how these attributes impact the final position of individual labels is key to getting
good results from the item label features in JFreeChart.

There are four attributes:
e the item label anchor - determines the base location for the item label;
e the text anchor - determines the point on the label that is aligned to the base location;

e the rotation anchor - this is the point on the label text about which the rotation (if any) is
applied;

e the rotation angle - the angle through which the label is rotated.

These are described in the following sections.

CHAPTER 12. ITEM LABELS 84

12.4.2 The Item Label Anchor

The purpose of the item label anchor setting is to determine an (z, y) location on the chart that is
near to the data item that is being labelled. The label is then aligned to this anchor point when it
is being drawn. Refer to the ItemLabelAnchor documentation for more information.

12.4.3 The Text Anchor

The text anchor determines which point on the label should be aligned with the anchor point
described in the previous section. It is possible to align the center of the label with the anchor point,
or the top-right of the label, or the bottom-left, and so on...refer to the TextAnchor documentation
for all the options.

Running the DrawStringDemo application in the org.jfree.demo package (included in the JCommon
distribution) is a good way to gain an understanding of how the text anchor is used to align labels
to a point on the screen.

12.4.4 The Rotation Anchor

The rotation anchor defines a point on the label about which the rotation (if any) will be applied
to the label. The DrawStringDemo class also demonstrates this feature.

12.4.5 The Rotation Angle

The rotation angle defines the angle through which the label is rotated. The angle is specified in
radians, and the rotation point is defined by the rotation anchor described in the previous section.

12.5 Customising the Item Label Text

12.5.1 Overview

Up to this point, we've relied on the label generator built in to JFreeChart to create the text for
the item labels. If you want to have complete control over the label text, you can write your own
class that implements the CategoryItemLabelGenerator interface.

In this section I provide a brief overview of the technique for implementing a custom label generator,
then present two examples to illustrate the type of results you can achieve with this technique.

12.5.2 Implementing a Custom Item Label Generator

To develop a custom label generator, you simply need to write a class that implements the method
defined in the CategoryItemLabelGenerator interface:

public String generateLabel(CategoryDataset dataset, int series, int category);

The renderer will call this method at the point that it requires a String use for a label, and will
pass in the CategoryDataset and the series and category indices for the current item. This means
that you have full access to the entire dataset (not just the current item) for the creation of the
label.

The method can return an arbitrary String value, so you can apply any formatting you want to
the result. It is also valid to return null if you prefer no label to be displayed.

All this is best illustrated by way of examples, which are provided in the following sections.

CHAPTER 12. ITEM LABELS

12.6 Example 1 - Values Above a Threshold

12.6.1 Overview

85

In this first example, the goal is to display labels for the items that have a value greater than some

predefined threshold value (see figure 12.3).

Item Label Demo 3

loo 93.0

Value
wn
=

1 cz c3
Category

Figure 12.3: Item labels above a threshold

It isn’t all that difficult to achieve, we simply need to:

e write a class that implements the CategoryItemLabelGenerator interface, and implement the
generateItemLabel () method in such a way that it returns null for any item where the value

is less than the threshold;

e create an instance of this new class, and assign it to the renderer using the setLabelGenerator ()

method.

12.6.2 Source Code

The complete source code is presented below.

* (C) Copyright 2004, 2005, by Object Refinery Limited.
*

*/
package demo;

import java.awt.Color;

import java.awt.Dimension;
import java.awt.Font;

import java.text.NumberFormat;

import javax.swing.JPanel;

import org.jfree.chart.ChartFactory;

import org.jfree.chart.ChartPanel;

import org.jfree.chart.JFreeChart;

import org.jfree.chart.axis.NumberAxis;

import org.jfree.chart.labels.AbstractCategoryItemLabelGenerator;
import org.jfree.chart.labels.CategoryItemLabelGenerator;
import org.jfree.chart.plot.CategoryPlot;

import org.jfree.chart.plot.PlotOrientation;

import org.jfree.chart.renderer.category.CategoryltemRenderer;
import org.jfree.data.category.CategoryDataset;

import org.jfree.data.category.DefaultCategoryDataset;

CHAPTER 12. ITEM LABELS 86

import org.jfree.ui.ApplicationFrame;
import org.jfree.ui.RefineryUtilities;

/%%

* A simple demo showing a label generator that only displays labels for items

* with
*/

a value that is greater than some threshold.

public class ItemLabelDemol extends ApplicationFrame {

/%

* A custom label generator.

*/

static class LabelGenerator extends AbstractCategoryltemLabelGenerator

}

/*%

implements CategoryItemLabelGenerator {

/** The threshold. */
private double threshold;

/%%
* Creates a new generator that only displays labels that are greater
* than or equal to the threshold value.
*
* @param threshold the threshold value.

*/
public LabelGenerator(double threshold) {
super ("", NumberFormat.getInstance());
this.threshold = threshold;
}
/*%
* Generates a label for the specified item. The label is typically a
* formatted version of the data value, but any text can be used.
*
* Qparam dataset the dataset (<code>null</code> not permitted).
* @param series the series index (zero-based).
* @param category the category index (zero-based).
*
* @return the label (possibly <code>null</code>).
*/

public String generateLabel(CategoryDataset dataset,
int series,
int category) {

String result = null;
Number value = dataset.getValue(series, category);
if (value != null) {
double v = value.doubleValue();
if (v > this.threshold) {
result = value.toString(); // could apply formatting here
}
}

return result;

* Creates a new demo instance.

*

* Q@param title the frame title.

*/

public ItemLabelDemol(String title) {

}

/%%

super (title);

CategoryDataset dataset = createDataset();

JFreeChart chart = createChart(dataset);

ChartPanel chartPanel = new ChartPanel(chart);
chartPanel.setPreferredSize(new Dimension(500, 270));
setContentPane (chartPanel) ;

* Returns a sample dataset.

*

* Q@return The dataset.

*/

private static CategoryDataset createDataset() {

DefaultCategoryDataset dataset = new DefaultCategoryDataset();

CHAPTER 12. ITEM LABELS

~ e
*

dataset.addValue(11.0, "S1", "Ci");
dataset.addValue(44.3, "Si", "C2");
dataset.addValue(93.0, "S1i", "C3");
dataset.addValue(35.6, "S1", "C4");
dataset.addValue(75.1, "S1", "C5");
return dataset;

Creates a sample chart.

*
*
*
* Q@param dataset the dataset.
*
*

Q@return the chart.

*/

private static JFreeChart createChart(CategoryDataset dataset) {

}

/**

// create the chart...
JFreeChart chart = ChartFactory.createBarChart (

"Item Label Demo 1", // chart title
"Category", // domain axis label
"Value", // range axis label
dataset, // data
PlotOrientation.VERTICAL, // orientation
false, // include legend
true, // tooltips?

false // URLs?

)3
chart.setBackgroundPaint (Color.white);

CategoryPlot plot = chart.getCategoryPlot();
plot.setBackgroundPaint (Color.lightGray) ;
plot.setDomainGridlinePaint (Color.white);
plot.setRangeGridlinePaint (Color.white);

NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setUpperMargin(0.15);

CategoryItemRenderer renderer = plot.getRenderer();
renderer.setItemLabelGenerator (new LabelGenerator(50.0));
renderer.setItemLabelFont (new Font("Serif", Font.PLAIN, 20));
renderer.setItemLabelsVisible(true);

return chart;

* Creates a panel for the demo (used by SuperDemo.java).

*

* Q@return A panel.

*/

public static JPanel createDemoPanel() {

}

/%%

JFreeChart chart = createChart(createDataset());
return new ChartPanel(chart);

* Starting point for the demonstration application.

*

* Q@param args ignored.

*/

public static void main(String[] args) {

ItemLabelDemol demo = new ItemLabelDemol("Item Label Demo 1");
demo .pack() ;

RefineryUtilities.centerFrameOnScreen(demo) ;
demo.setVisible(true);

87

CHAPTER 12. ITEM LABELS 88

12.7 Example 2 - Displaying Percentages

12.7.1 Overview

In this example, the requirement is to display a bar chart where each bar is labelled with the
value represented by the bar and also a percentage (where the percentage is calculated relative to
a particular bar within the series OR the total of all the values in the series)—see figure 12.4.

(I Ttem bt Deme e ——O

Item Label Demo 4

100.0 @423

Category

93.0 139%)

0 10 20 30 40 S0 G0 70 80 an 100 110 120
WYalue

Figure 12.4: Percentage item labels

In this implementation, the label generator calculates the percentage value on-the-fly. If a category
index is supplied in the constructor, the base value used to calculate the percentage is taken from
the specified category within the current series. If no category index is available, then the total of
all the values in the current series is used as the base.

A default percentage formatter is created within the label generator—a more sophisticated im-
plementation would provide the ability for the formatter to be customised via the generator’s
constructor.

12.7.2 Source Code
The complete source code follows.

[k mmmm e

* ItemLabelDemo2.java

* (C) Copyright 2005, by Object Refinery Limited.
*

*/
package demo;
import java.awt.Color;

/*x

* A simple demo showing a label generator that displays labels that include
* a percentage calculation.

*/

public class ItemLabelDemo2 extends ApplicationFrame {

/%%

* A custom label generator.

*/

static class LabelGenerator extends AbstractCategoryltemLabelGenerator
implements CategoryItemLabelGenerator {

/**
* The index of the category on which to base the percentage

CHAPTER 12. ITEM LABELS

* (null = use series total).
*/

private Integer category;

/** A percent formatter. */
private NumberFormat formatter = NumberFormat.getPercentInstance();

/%%
* Creates a new label generator that displays the item value and a
* percentage relative to the value in the same series for the
* specified category.
*
*

@param category the category index (zero-based).
*/
public LabelGenerator(int category) {
this(new Integer(category));
}

/**

* Creates a new label generator that displays the item value and

* a percentage relative to the value in the same series for the

* specified category. If the category index is <code>null</code>,
* the total of all items in the series is used.
*
*

Qparam category the category index (<code>null</code> permitted).
*/
public LabelGenerator(Integer category) {
super ("", NumberFormat.getInstance());
this.category = category;

}

/%%
* Generates a label for the specified item. The label is typically
a formatted version of the data value, but any text can be used.

*
*

* QOparam dataset the dataset (<code>null</code> not permitted).
* QOparam series the series index (zero-based).

* @param category the category index (zero-based).

*
*

Q@return the label (possibly <code>null</code>).
*/
public String generatelLabel(CategoryDataset dataset,
int series,
int category) {

String result = null;
double base = 0.0;
if (this.category != null) {

final Number b = dataset.getValue(series, this.category.intValue());

base = b.doubleValue();

}
else {

base = calculateSeriesTotal(dataset, series);
}

Number value = dataset.getValue(series, category);
if (value != null) {
final double v = value.doubleValue();
// you could apply some formatting here
result = value.toString()
+ " (" + this.formatter.format(v / base) + ")";
}

return result;

Calculates a series total.

*
*

* Qparam dataset the dataset.

* Qparam series the series index.
*
*

@return The total.
*/

private double calculateSeriesTotal(CategoryDataset dataset, int series) {

double result = 0.0;
for (int i = 0; i < dataset.getColumnCount(); i++) {
Number value = dataset.getValue(series, i);
if (value != null) {
result = result + value.doubleValue();

}

89

CHAPTER 12. ITEM LABELS

return result;

}

/*%
* Creates a new demo instance.
*
* @param title the frame title.
*/
public ItemLabelDemo2(String title) {

super (title);

CategoryDataset dataset = createDataset();

JFreeChart chart = createChart(dataset);

ChartPanel chartPanel = new ChartPanel(chart);
chartPanel .setPreferredSize (new Dimension(500, 270));
setContentPane (chartPanel);

}

/%%
* Returns a sample dataset.
*
* Q@return the dataset.
*/

private static CategoryDataset createDataset() {

DefaultCategoryDataset dataset = new DefaultCategoryDataset();
dataset.addValue(100.0, "Si", "C1i");

dataset.addValue(44.3, "Si", "C2");

dataset.addValue(93.0, "S1i", "C3");

dataset.addValue(80.0, "S2", "C1");

dataset.addValue(75.1, "S2", "C2");

dataset.addValue(15.1, "S2", "C3");

return dataset;

}

/*%
* Creates a sample chart.
*

* Q@param dataset the dataset.
*

* Qreturn the chart.
*/
private static JFreeChart createChart(CategoryDataset dataset) {

// create the chart...
JFreeChart chart = ChartFactory.createBarChart(

"Item Label Demo 2", // chart title
"Category", // domain axis label
"Value", // range axis label
dataset, // data
PlotOrientation.HORIZONTAL, // orientation

true, // include legend
true, // tooltips?

false // URLs?

);
chart.setBackgroundPaint(Color.white);

CategoryPlot plot = chart.getCategoryPlot();
plot.setBackgroundPaint (Color.lightGray) ;
plot.setDomainGridlinePaint (Color.white);
plot.setRangeGridlinePaint (Color.white);
plot.setRangeAxisLocation(AxisLocation.BOTTOM_OR_LEFT);

NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setUpperMargin(0.25) ;

CategoryItemRenderer renderer = plot.getRenderer();
renderer.setItemLabelsVisible(true);

// use one or the other of the following lines to see the
// different modes for the label generator...
renderer.setItemLabelGenerator (new LabelGenerator(null));
//renderer.setLabelGenerator (new LabelGenerator(0));

return chart;

CHAPTER 12. ITEM LABELS

}

/%%
* Creates a panel for the demo (used by SuperDemo.java).
*
* Q@return A panel.
*/
public static JPanel createDemoPanel() {
JFreeChart chart = createChart(createDataset());
return new ChartPanel(chart);

}

/%%
* Starting point for the demonstration application.
*
* Qparam args ignored.
*/
public static void main(String[] args) {

ItemLabelDemo2 demo = new ItemLabelDemo2("Item Label Demo 2");
demo.pack();

RefineryUtilities.centerFrameOnScreen(demo) ;
demo.setVisible(true);

91

Chapter 13

Multiple Axes and Datasets

13.1 Introduction

JFreeChart supports the use of multiple axes and datasets in the CategoryPlot and XYPlot classes.
You can use this feature to display two or more datasets on a single chart, while making allowance
for the fact that the datasets may contain data of vastly different magnitudes—see figure 13.1 for
an example.

Multiple Axis Demo 1

Four datasets and four range axes.

=
o

lzoo 15,000

is

130 12,500

1ion

Fange Axis 2

10,000 2

o
=

1000
7,500

a00

£ sixy 2

5,000

Frimary Range A&

2,500

=
=

GO0

15:20 15:40 16:00 16:20 16:40 17:00 17:20 17:40 18:00 18&:20
Time of Day

|ISe|‘ie51 Mseries 2 MSeries 3 MSeries 4 |

Figure 13.1: A chart with multiple azes

Typical charts constructed with JFreeChart use a plot that has a single dataset, a single renderer,
a single domain axis and a single range axis. However, it is possible to add multiple datasets,
renderers and axes to a plot. In this section, an example is presented showing how to use these
additional datasets, renderers and axes.

13.2 An Example

13.2.1 Introduction

The MultipleAxisDemol.java application (included in the JFreeChart Demo distribution) provides
a good example of how to create a chart with multiple axes. This section provides some notes on
the steps taken within that code.

92

CHAPTER 13. MULTIPLE AXES AND DATASETS 93

13.2.2 Create a Chart

To create a chart with multiple axes, datasets, and renderers, you should first create a regular chart
(for example, using the ChartFactory class). You can use any chart that is constructed using a

CategoryPlot or an XYPlot. In the example, a time series chart is created as follows:
XYDataset datasetl = createDataset("Series 1", 100.0, new Minute(), 200);
JFreeChart chart = ChartFactory.createTimeSeriesChart(
"Multiple Axis Demo 1",
"Time of Day",
"Primary Range Axis",
datasetl,
true,

true,
false

13.2.3 Adding an Additional Axis
To add an additional axis to a plot, you can use the setRangeAxis() method:

NumberAxis axis2 = new NumberAxis("Range Axis 2");
plot.setRangeAxis (1, axis2);
plot.setRangeAxisLocation(1, AxisLocation.BOTTOM-OR_RIGHT);

The setRangeAxis() method is used to add the axis to the plot. Note that an index of 1 (one) has
been used—you can add as many additional axes as you require, by incrementing the index each
time you add a new axis.

The setRangeAxisLocation() method allows you to specify where the axis will appear on the chart,
using the AxisLocation class. You can have the axis on the same side as the primary axis, or on
the opposite side—the choice is yours. In the example, BOTTOM_OR_RIGHT is specified, which means
(for a range axis) on the right if the plot has a vertical orientation, or at the bottom if the plot has
a horizontal orientation.

At this point, no additional dataset has been added to the chart, so if you were to display the chart
you would see the additional axis, but it would have no data plotted against it.

13.2.4 Adding an Additional Dataset
To add an additional dataset to a plot, use the setDataset() method:

XYDataset dataset2 = ... // up to you
plot.setDataset(1l, dataset2);

By default, the dataset will be plotted against the primary range azis. To have the dataset plotted
against a different axis, use the mapDatasetToDomainAxis() and mapDatasetToRangeAxis() methods.
These methods accept two arguments, the first is the index of the dataset, and the second is the
index of the axis.

13.2.5 Adding an Additional Renderer

When you add an additional dataset, usually it makes sense to add an additional renderer to go
with the dataset. Use the setRenderer() method:

XYItemRenderer renderer2 = ... // up to you
plot.setRenderer (1, renderer2);

The index (1 in this case) should correspond to the index of the dataset added previously.

Note: if you don’t specify an additional renderer, the primary renderer will be used instead. In
that case, the series colors will be shared between the primary dataset and the additional dataset.

CHAPTER 13. MULTIPLE AXES AND DATASETS

13.3 Hints and Tips

94

When using multiple axes, you need to provide some visual cue to readers to indicate which axis
applies to a particular series. In the MultipleAxisDemol. java application, the color of the axis label

text has been changed to match the series color.

Additional demos available for download with the JFreeChart Developer Guide include:

DualAxisDemol. java
DualAxisDemo2. java
DualAxisDemo3. java
DualAxisDemo4. java
MultipleAxisDemol. java
MultipleAxisDemo2. java

MultipleAxisDemo3. java

Chapter 14

Combined Charts

14.1 Introduction

JFreeChart supports combined charts via several plot classes that can manage any number of sub-
plots:

® CombinedDomainCategoryPlot / CombinedRangeCategoryPlot;

e CombinedDomainXYPlot / CombinedRangeXYPlot;

This section presents a few examples that use the combined chart facilities provided by JFreeChart.
All the examples are included in the JFreeChart demo collection.

14.2 Combined Domain Category Plot

14.2.1 Overview

A combined domain category plot is a plot that displays two or more subplots (instances of CategoryPlot)
that share a common domain axis. Each subplot maintains its own range axis. An example is shown

in figure 14.1.

Combined Domain Category Plot Demo

| _
OO0 100 T 0

Type 1 Type 2 Type 3 Typed Type 5 Type & Type 7 Type d
Category

o

Value
E-

Value
=

o

| W First WSecond WThird Fourth |

Figure 14.1: A combined domain category plot

It is possible to display this chart with a horizontal or vertical orientation—the example shown has

a vertical orientation.

CHAPTER 14. COMBINED CHARTS 96

14.2.2 Constructing the Chart

A demo application (CombinedCategoryPlotDemol.java, available for download with the JFreeChart
Developer Guide) provides an example of how to create this type of chart. The key step is the
creation of a CombinedDomainCategoryPlot instance, to which subplots are added:

CategoryAxis domainAxis = new CategoryAxis("Category");
CombinedDomainCategoryPlot plot = new CombinedDomainCategoryPlot(domainAxis);
plot.add(subplotl, 2);

plot.add(subplot2, 1);

JFreeChart result = new JFreeChart(
"Combined Domain Category Plot Demo",
new Font("SansSerif", Font.BOLD, 12),
plot,
true

)

Notice how subplot1 has been added with a weight of 2 (the second argument in the add() method,
while subplot2 has been added with a weight of 1. This controls the amount of space allocated to
each plot.

The subplots are regular CategoryPlot instances that have had their domain axis set to null. For
example, in the demo application the following code is used (it includes some customisation of the
subplots):

CategoryDataset datasetl = createDataset1();

NumberAxis rangeAxisl = new NumberAxis("Value");

rangeAxisl.setStandardTickUnits (NumberAxis.createIntegerTickUnits());
LineAndShapeRenderer rendererl = new LineAndShapeRenderer();
rendererl.setBaseToolTipGenerator(new StandardCategoryToolTipGenerator());
CategoryPlot subplotl = new CategoryPlot(datasetl, null, rangeAxisl, rendererl);
subplotl.setDomainGridlinesVisible(true);

CategoryDataset dataset2 = createDataset2();

NumberAxis rangeAxis2 = new NumberAxis("Value");

rangeAxis2.setStandardTickUnits (NumberAxis.createIntegerTickUnits());
BarRenderer renderer2 = new BarRenderer();

renderer2.setBaseToolTipGenerator (new StandardCategoryToolTipGenerator());
CategoryPlot subplot2 = new CategoryPlot(dataset2, null, rangeAxis2, renderer2);
subplot2.setDomainGridlinesVisible(true);

14.3 Combined Range Category Plot

14.3.1 Overview

A combined range category plot is a plot that displays two or more subplots (instances of CategoryPlot)
that share a common range azis. Each subplot maintains its own domain axis. An example is shown
in figure 14.2.

It is possible to display this chart with a horizontal or vertical orientation (the example above has
a vertical orientation).

14.3.2 Constructing the Chart

A demo application (CombinedCategoryPlotDemo2.java, available for download with the JFreeChart
Developer Guide) provides an example of how to create this type of chart. The key step is the
creation of a CombinedRangeCategoryPlot instance, to which subplots are added:

ValueAxis rangeAxis = new NumberAxis("Value");

CombinedRangeCategoryPlot plot = new CombinedRangeCategoryPlot(rangeAxis);
plot.add(subplotl, 3);

plot.add(subplot2, 2);

JFreeChart result = new JFreeChart(
"Combined Range Category Plot Demo",
new Font("SansSerif", Font.BOLD, 12),
plot,
true

)

CHAPTER 14. COMBINED CHARTS 97

{_)combined category Plot Demo 2 -~~~ O

Combined Range Category Plot Demo

175 -
15.0 -
125 -
100 -
75 - e
5.0-

o0
T . T] L] A % N
'«\‘? A\i& .\-«\‘? A\i& .\-«\‘? Qﬁz Q{f Q-{f ‘,Qbo\ Fg}é & ‘g}(}
Class 1 Class 2

Value

|WFirst WSecond W Thin Fourth |

Figure 14.2: A combined range category plot.

Notice how subploti has been added with a weight of 3 (the second argument in the add() method),
while subplot2 has been added with a weight of 2. This controls the amount of space allocated to
each plot.

The subplots are regular CategoryPlot instances that have had their range axis set to null. For
example, in the demo application the following code is used (it includes some customisation of the
subplots):

CategoryDataset datasetl = createDatasetl1();

CategoryAxis domainAxisl = new CategoryAxis("Class 1");

domainAxisl.setCategoryLabelPositions(CategoryLabelPositions.UP_45) ;

domainAxisl.setMaxCategoryLabelWidthRatio(5.0f);

LineAndShapeRenderer rendererl = new LineAndShapeRenderer();

rendererl.setBaseToolTipGenerator(new StandardCategoryToolTipGenerator());

CategoryPlot subplotl = new CategoryPlot(datasetl, domainAxisl, null, rendereri);
subplotl.setDomainGridlinesVisible(true) ;

CategoryDataset dataset2 = createDataset2();

CategoryAxis domainAxis2 = new CategoryAxis("Class 2");
domainAxis2.setCategoryLabelPositions(CategoryLabelPositions.UP_45);
domainAxis2.setMaxCategoryLabelWidthRatio(5.0f);

BarRenderer renderer2 = new BarRenderer();

renderer2.setBaseToolTipGenerator(new StandardCategoryToolTipGenerator());
CategoryPlot subplot2 = new CategoryPlot(dataset2, domainAxis2, null, renderer2);
subplot2.setDomainGridlinesVisible(true) ;

14.4 Combined Domain XY Plot

14.4.1 Overview

A combined domain XY plot is a plot that displays two or more subplots (instances of XYPlot) that
share a common domain axis. Each subplot maintains its own range azis. An example is shown in
figure 14.3.

It is possible to display this chart with a horizontal or vertical orientation (the example shown has
a vertical orientation).

14.4.2 Constructing the Chart

A demo application (CombinedXYPlotDemol.java, available for download with the JFreeChart Devel-
oper Guide) provides an example of how to create this type of chart. The key step is the creation
of a CombinedDomainXYPlot instance, to which subplots are added:

CombinedDomainXYPlot plot = new CombinedDomainXYPlot(new NumberAxis("Domain"));
plot.setGap(10.0);

CHAPTER 14. COMBINED CHARTS 98

CombinedDomainXYPlot Demo
_, 15,000
o 10,000
=
]
& 5,000
0
20,000
™ 17,500
w
{=]]
S 15,000
o
12,500 :
0 25 50 75 100 125 150 175
Domain
|mSeries | MSeries 2 MSeries 3 |

Figure 14.3: A combined domain XY plot

plot.add(subplotl, 1);
plot.add(subplot2, 1);
plot.setOrientation(PlotOrientation.VERTICAL) ;

return new JFreeChart(

"CombinedDomainXYPlot Demo",

JFreeChart .DEFAULT_TITLE_FONT, plot, true
);

Notice how the subplots are added with weights (both 1 in this case). This controls the amount of
space allocated to each plot.

The subplots are regular XYP1lot instances that have had their domain axis set to null. For example,
in the demo application the following code is used (it includes some customisation of the subplots):

XYDataset datal = createDataset1();

XYItemRenderer rendererl = new StandardXYItemRenderer();
NumberAxis rangeAxisl = new NumberAxis("Range 1");

XYPlot subplotl = new XYPlot(datal, null, rangeAxisl, rendererl);
subplotl.setRangeAxisLocation(AxisLocation.BOTTOM_OR_LEFT) ;

XYTextAnnotation annotation = new XYTextAnnotation("Hello!", 50.0, 10000.0);
annotation.setFont (new Font("SansSerif", Font.PLAIN, 9));
annotation.setRotationAngle(Math.PI / 4.0);
subplotl.addAnnotation(annotation) ;

// create subplot 2...

XYDataset data2 = createDataset2();

XYItemRenderer renderer2 = new StandardXYItemRenderer();
NumberAxis rangeAxis2 = new NumberAxis("Range 2");
rangeAxis2.setAutoRangeIncludesZero(false);

XYPlot subplot2 = new XYPlot(data2, null, rangeAxis2, renderer2);
subplot2.setRangeAxisLocation(AxisLocation.TOP_OR_LEFT);

14.5 Combined Range XY Plot

14.5.1 Overview

A combined range XY plot is a plot that displays two or more subplots (instances of XYPlot) that
share a common range axis. Fach subplot maintains its own domain azis. An example is shown in
figure 14.4.

It is possible to display this chart with a horizontal or vertical orientation (the example shown has
a vertical orientation).

CHAPTER 14. COMBINED CHARTS

IS L ——

Combined (Range) XY Plot

20,000 -

17,500 -

15,000 -
o 12,500 -
=
™ 10,000 -
=

7,500 -

5,000 -

2,500 -

g MEEEN . .
7-Mar 14-Mar 7-Mar 14 -Mar
Date Date

Wieries] MSeries 2

Figure 14.4: A combined range XY plot

14.5.2 Constructing the Chart

A demo application (CombinedXYPlotDemo2.java, available for download with the JFreeChart Devel-

99

oper Guide) provides an example of how to create this type of chart. The key step is the creation

of a CombinedRangeXYPlot instance, to which subplots are added:

// create the plot...

CombinedRangeXYPlot plot = new CombinedRangeXYPlot(new NumberAxis("Value"));
plot.add(subplotl, 1);

plot.add(subplot2, 1);

return new JFreeChart(

"Combined (Range) XY Plot",

JFreeChart .DEFAULT_TITLE_FONT, plot, true
);

Notice how the subplots are added with weights (both 1 in this case). This controls the amount of

space allocated to each plot.

The subplots are regular XYPlot instances that have had their range axis set to null. For example,
in the demo application the following code is used (it includes some customisation of the subplots):

// create subplot 1...
IntervalXYDataset datal = createDataset1();
XYItemRenderer rendererl = new XYBarRenderer(0.20);
rendererl.setToolTipGenerator (

new StandardXYToolTipGenerator(

new SimpleDateFormat("d-MMM-yyyy"), new DecimalFormat("0,000.0")

)
);
XYPlot subplotl = new XYPlot(datal, new DateAxis("Date"), null, rendererl);

// create subplot 2...
XYDataset data2 = createDataset2();
XYItemRenderer renderer2 = new StandardXYItemRenderer();
renderer2.setToolTipGenerator (

new StandardXYToolTipGenerator(

new SimpleDateFormat("d-MMM-yyyy"), new DecimalFormat("0,000.0")

)
)3
XYPlot subplot2 = new XYPlot(data2, new DateAxis("Date"), null, renderer2);

Chapter 15

Datasets and JDBC

15.1 Introduction

In this section, I describe the use of several datasets that are designed to work with JDBC to obtain
data from database tables:

® JDBCPieDataset
o JDBCCategoryDataset
o JDBCXYDataset

These datasets have been developed by Bryan Scott of the Australian Antarctic Division.

15.2 About JDBC

JDBC is a high-level Java API for working with relational databases. JDBC does a good job of
furthering Java’s platform independence, making it possible to write portable code that will work
with many different database systems.

JDBC provides a mechanism for loading a JDBC' driver specific to the database system actually
being used. JDBC drivers are available for many databases, on many different platforms.

15.3 Sample Data

To see the JDBC datasets in action, you need to create some sample data in a test database.

Here is listed some sample data that will be used to create a pie chart, a bar chart and a time series
chart.

A pie chart will be created using this data (in a table called piedatal):

CATEGORY | VALUE
_________ +______

London | 54.3
New York | 43.4
Paris | 17.9

Similarly, a bar chart will be created using this data (in a table called categorydatal):

CATEGORY | SERIES1 | SERIES2 | SERIES3

————————— M
London | 54.3 | 32.1 | 53.4
New York | 43.4 | 54.3 | 75.2
Paris | 17.9 | 34.8 | 37.1

100

CHAPTER 15. DATASETS AND JDBC 101

Finally, a time series chart will be generated using this data (in a table called xydatal):

X | SERIES1 | SERIES2 | SERIES3
1-Aug-2002 | 54.3 | 32.1 | 53.4
2-Aug-2002 | 43.4 | 54.3 | 75.2
3-Aug-2002 | 39.6 | 55.9 | 37.1
4-Aug-2002 | 35.4 | 55.2 | 27.5
5-Aug-2002 | 33.9 | 49.8 | 22.3
6-Aug-2002 | 35.2 | 48.4 | 17.7
7-Aug-2002 | 38.9 | 49.7 | 15.3
8-Aug-2002 | 36.3 | 44 .4 | 12.1
9-Aug-2002 | 31.0 | 46.3 | 11.0

You should set up a test database containing these tables...ask your database administrator to help
you if necessary. I've called my test database jfreechartdb, but you can change the name if you
want to.

In the next section I document the steps I used to set up this sample data usingPostgreSQL, the
database system that I have available for testing purposes. If you are using a different system,
you may need to perform a slightly different procedure—refer to your database documentation for
information.

15.4 PostgreSQL
15.4.1 About PostgreSQL

PostgreSQL is a powerful object-relational database server, distributed under an open-source licence.
You can find out more about PostgreSQL at:

http://wuw.postgresql.org

Note: although PostgreSQL is free, it has most of the features of large commercial relational
database systems. I encourage you to install it and try it out.

15.4.2 Creating a New Database

First, while logged in as the database administrator, I create a test database called jfreechartdb:
CREATE DATABASE jfreechartdb;

Next, I create a user jfreechart:
CREATE USER jfreechart WITH PASSWORD ’password’;

This username and password will be used to connect to the database via JDBC.

15.4.3 Creating the Pie Chart Data
To create the table for the pie dataset:

CREATE TABLE piedatal (
category VARCHAR(32),
value FLOAT

);

...and to populate it:

INSERT INTO piedatal VALUES (’London’, 54.3);
INSERT INTO piedatal VALUES (’New York’, 43.4);
INSERT INTO piedatal VALUES (’Paris’, 17.9);

CHAPTER 15. DATASETS AND JDBC 102

15.4.4 Creating the Category Chart Data
To create the table for the category dataset:

CREATE TABLE categorydatal (
category VARCHAR(32),
seriesl FLOAT,
series2 FLOAT,
series3 FLOAT

);

...and to populate it:

INSERT INTO categorydatal VALUES (’London’, 54.3, 32.1, 53.4);
INSERT INTO categorydatal VALUES (’New York’, 43.4, 54.3, 75.2);
INSERT INTO categorydatal VALUES (’Paris’, 17.9, 34.8, 37.1);

15.4.5 Creating the XY Chart Data
To create the table for the XY dataset:

CREATE TABLE xydatal (
date DATE,
seriesl FLOAT,
series2 FLOAT,
series3 FLOAT

)

...and to populate it:
INSERT INTO xydatal VALUES (’1-Aug-2002°, 54.3, 32.1, 53.4);
INSERT INTO xydatal VALUES (’2-Aug-2002°, 43.4, 54.3, 75.2);
INSERT INTO xydatal VALUES (’3-Aug-2002’, 39.6, 55.9, 37.1);
INSERT INTO xydatal VALUES (’4-Aug-2002°, 35.4, 55.2, 27.5);
INSERT INTO xydatal VALUES (’5-Aug-2002°, 33.9, 49.8, 22.3);
INSERT INTO xydatal VALUES (’6-Aug-2002’, 35.2, 48.4, 17.7);
INSERT INTO xydatal VALUES (’7-Aug-2002°, 38.9, 49.7, 15.3);
INSERT INTO xydatal VALUES (’8-Aug-2002’, 36.3, 44.4, 12.1);
INSERT INTO xydatal VALUES (’9-Aug-2002’, 31.0, 46.3, 11.0);

Granting Table Permissions

The last step in setting up the sample database is to grant read access to the new tables to the user
jfreechart:

GRANT SELECT ON piedatal TO jfreechart;

GRANT SELECT ON categorydatal TO jfreechart;
GRANT SELECT ON xydatal TO jfreechart;

15.5 The JDBC Driver

To access the sample data via JDBC, you need to obtain a JDBC driver for your database. For
PostgreSQL, I downloaded a free driver from:

http://jdbc.postgresql.org

In order to use this driver, I need to ensure that the jar file containing the driver is on the classpath.

CHAPTER 15. DATASETS AND JDBC 103

15.6 The Demo Applications
15.6.1 JDBCPieChartDemo

The JDBCPieChartDemo application will generate a pie chart using the data in the piedatal table,
providing that you have configured your database correctly.

The code for reading the data is in the readData() method:

private PieDataset readData() {
JDBCPieDataset data = null;

String url = "jdbc:postgresql://nomad/jfreechartdb";
Connection con;

try {
Class.forName("org.postgresql.Driver");

}

catch (ClassNotFoundException e) {
System.err.print("ClassNotFoundException: ");
System.err.println(e.getMessage());

try {
con = DriverManager.getConnection(url, "jfreechart", "password");

data = new JDBCPieDataset(con);

String sql = "SELECT * FROM PIEDATA1;";
data.executeQuery(sql);

con.close();

}

catch (SQLException e) {
System.err.print ("SQLException: ");
System.err.println(e.getMessage());
}

catch (Exception e) {
System.err.print ("Exception: ");
System.err.println(e.getMessage());
}
return data;
}
Important things to note in the code are:

e the url used to reference the test database includes the name of my test server (nomad), you
will need to modify this;

e a connection is made to the database using the username/password combination jfreechart/password

e the query used to pull the data from the database is a standard SELECT query, but you
can use any SQL query as long as it returns columns in the required format (refer to the
JDBCPieDataset class documentation for details).

15.6.2 JDBCCategoryChartDemo

The JDBCCategoryChartDemo application generates a bar chart using the data in the categorydatal
table. The code is almost identical to the JDBCPieChartDemo. Once again, you can use any SQL
query as long as it returns columns in the required format (refer to the JDBCCategoryDataset class
documentation for details).

15.6.3 JDBCXYChartDemo

The JDBCXYChartDemo application generates a time series chart using the data in the xydatal table.
The code is almost identical to the JDBCPieChartDemo. Once again, you can use any SQL query as
long as it returns columns in the required format (refer to the JDBCXYDataset class documentation
for details).

b

Chapter 16

Exporting Charts to Acrobat PDF

16.1 Introduction

In this section, I describe how to export a chart to an Acrobat PDF file using JFreeChart and
iText. Along with the description, I provide a small demonstration application that creates a PDF
file containing a basic chart. The resulting file can be viewed using Acrobat Reader, or any other
software that is capable of reading and displaying PDF files.

16.2 What is Acrobat PDF?

Acrobat PDF is a widely used electronic document format. Its popularity is due, at least in part,
to its ability to reproduce high quality output on a variety of different platforms.

PDF was created by Adobe Systems Incorporated. Adobe provide a free (but closed source) ap-
plication called Acrobat Reader for reading PDF documents. Acrobat Reader is available on most
end-user computing platforms, including GNU/Linux, Windows, Unix, Macintosh and others.

If your system doesn’t have Acrobat Reader installed, you can download a copy from:
http://www.adobe.com/products/acrobat/readstep.html

On some platforms, there are free (in the GNU sense) software packages available for viewing PDF
files. Ghostview on Linux is one example.

16.3 1iText

iText is a popular free Java class library for creating documents in PDF format. It is developed by
Bruno Lowagie, Paulo Soares and others. The home page for iText is:

http://wuw.lowagie.com/iText

At the time of writing, the latest version of iText is 2.0.1.

16.4 Graphics2D

JFreeChart can work easily with iText because iText provides a Graphics2D implementation. Before
I proceed to the demonstration application, I will briefly review the Graphics2D class.

The java.awt.Graphics2D class, part of the standard Java 2D API, defines a range of methods for
drawing text and graphics in a two dimensional space. Particular subclasses of Graphics2D handle
all the details of mapping the output (text and graphics) to specific devices.

104

CHAPTER 16. EXPORTING CHARTS TO ACROBAT PDF 105

JFreeChart has been designed to draw charts using only the methods defined by the Graphics2D
class. This means that JFreeChart can generate output to any target that can provide a Graphics2D
subclass.

— I
=
JFreeChart]
d Graphics2 [H—
+draw(Graphics2D) _> F—

» | PDF

Figure 16.1: The JFreeChart draw() method

iText incorporates a PdfGraphics2D class, which means that iText is capable of generating PDF
content based on calls to the methods defined by the Graphics2D class...and this makes it easy to
produce charts in PDF format, as you will see in the following sections.

16.5 Getting Started

To compile and run the demonstration application, you will need the following jar files:

File: ‘ Description:

jfreechart-1.0.13.jar | The JFreeChart class library.

jcommon-1.0.16. jar The JCommon class library (used by JFreeChart).
itext-2.0.1.jar The iText class library.

The first two files are included with JFreeChart, and the third is the iText runtime.

16.6 The Application

The first thing the sample application needs to do is create a chart. Here we create a time series
chart:

// create a chart...
XYDataset dataset = createDataset();
JFreeChart chart = ChartFactory.createTimeSeriesChart(
"Legal & General Unit Trust Prices",
"Date",
"Price Per Unit",
dataset,
true,
true,
false

);

// some additional chart customisation here...
There is nothing special here—in fact you could replace the code above with any other code that
creates a JFreeChart object. You are encouraged to experiment.
Next, I will save a copy of the chart in a PDF file:

// write the chart to a PDF file...

File fileName = new File(System.getProperty("user.home") + "/jfreechartl.pdf");
saveChartAsPDF (fileName, chart, 400, 300, new DefaultFontMapper());

CHAPTER 16. EXPORTING CHARTS TO ACROBAT PDF 106

There are a couple of things to note here.

First, I have hard-coded the filename used for the PDF file. I've done this to keep the sample
code short. In a real application, you would provide some other means for the user to specify the
filename, perhaps by presenting a file chooser dialog.

Second, the saveChartAsPDF () method hasn’t been implemented yet! To create that method, I'll
first write another more general method, writeChartAsPDF (). This method performs most of the
work that will be required by the saveChartAsPDF () method, but it writes data to an output stream
rather than a file.

public static void writeChartAsPDF (OutputStream out,
JFreeChart chart,
int width,
int height,
FontMapper mapper) throws IOException {

Rectangle pagesize = new Rectangle(width, height);

Document document = new Document (pagesize, 50, 50, 50, 50);

try {
PdfWriter writer = Pdfliriter.getInstance(document, out);
document .addAuthor ("JFreeChart") ;
document .addSubject ("Demonstration") ;
document . open() ;
PdfContentByte cb = writer.getDirectContent();
PdfTemplate tp = cb.createTemplate(width, height);
Graphics2D g2 = tp.createGraphics(width, height, mapper);
Rectangle2D r2D = new Rectangle2D.Double(0, O, width, height);
chart.draw(g2, r2D);
g2.dispose();
cb.addTemplate(tp, 0, 0);

}

catch (DocumentException de) {
System.err.println(de.getMessage());

}

document.close();

}

Inside this method, you will see some code that sets up and opens an iText document, obtains a
Graphics2D instance from the document, draws the chart using the Graphics2D object, and closes
the document.

You will also notice that one of the parameters for this method is a FontMapper object. The
FontMapper interface maps Java Font objects to the BaseFont objects used by iText.

The DefaultFontMapper class is predefined with default mappings for the Java logical fonts. If you
use only these fonts, then it is enough to create a DefaultFontMapper using the default constructor.
If you want to use other fonts (for example, a font that supports a particular character set) then
you need to do more work. I'll give an example of this later.

In the implementation of the writeChartAsPDF () method, I've chosen to create a PDF document
with a custom page size (matching the requested size of the chart). You can easily adapt the code
to use a different page size, alter the size and position of the chart and even draw multiple charts
inside one PDF document.

Now that I have a method to send PDF data to an output stream, it is straightforward to imple-
ment the saveChartAsPDF() method. Simply create a FileOutputStream and pass it on to the
writeChartAsPDF () method:

public static void saveChartAsPDF(File file,
JFreeChart chart,
int width,
int height,
FontMapper mapper) throws IOException {

OutputStream out = new BufferedOutputStream(new FileOutputStream(file));
writeChartAsPDF (out, chart, width, height, mapper);
out.close();

CHAPTER 16. EXPORTING CHARTS TO ACROBAT PDF

107

This is all the code that is required. The pieces can be assembled into the following program
(reproduced in full here so that you can see all the required import statements and the context in
which the code is run):

[¥ e
* PDFExportDemol. java

* (C) Copyright 2002-2005, by Object Refinery Limited.
*

*/

package demo.pdf;

import
import
import
import
import
import
import
import

import
import
import
import
import
import
import
import
import

import
import
import
import
import
import
import
import

/*%

java
java

java.
java.
java.
java.
java.

java

org.
org.
org.
org.
org.
org
org.
org
org.

com.
com.
com.
com.
com
com.
com
com.

.awt.Graphics2D;
.awt.geom.Rectangle2D;

io.BufferedOutputStream;
io.File;
io.FileOutputStream;
io.IO0Exception;

io.OutputStream;

.text.SimpleDateFormat;

jfree.chart

jfree.chart.

jfree.chart
jfree.chart
jfree.chart
.jfree.data.time.Month;

.Char

JFre

.axis
.plot
.renderer.xy.XYLineAndShapeRenderer;

tFactory;
eChart;
.DateAxis;
.XYPlot;

jfree.data.time.TimeSeries;

.jfree.data.time.TimeSeriesCollection;

jfree.data.xy.XYDataset;

lowagie.
lowagie.
lowagie.
lowagie.
.lowagie.
lowagie.
.lowagie.
lowagie.

text
text
text
text
text
text
text
text

.Doc
.Doc
.Rec
.pdf
.pdf
.pdf
.pdf
.pdf

ument ;
umentException;
tangle;
.DefaultFontMapper;
.FontMapper;
.PdfContentByte;
.PdfTemplate;
.PdfWriter;

* A simple demonstration showing how to write a chart to PDF format using
* JFreeChart and iText.

* You can download iText from http://www.lowagie.com/iText.

public class PDFExportDemol {

* <P>

*/
/%%
*
*
*
*
*
*

*/

Saves a chart to a PDF file.

@par

am file

the file.

@param chart the chart.

@param width the chart width.
@param height the chart height.

public static void saveChartAsPDF(File file,

/%%

LR R TR

*/

OutputStream out =
writeChartAsPDF (out, chart, width, height, mapper);
out.close();

JFreeChart chart,

int width,

int height,

FontMapper mapper) throws IOException {

new BufferedOutputStream(new FileOutputStream(file));

Writes a chart to an output stream in PDF format.

@param out the output stream.
@param chart the chart.

@param width the chart width.
@param height the chart height.

public static void writeChartAsPDF(OutputStream out,

JFreeChart chart,

CHAPTER 16. EXPORTING CHARTS TO ACROBAT PDF

int width,
int height,
FontMapper mapper) throws IOException {

Rectangle pagesize = new Rectangle(width, height);
Document document = new Document (pagesize, 50, 50, 50, 50);

try {

PdfWriter writer = PdfWriter.getInstance(document, out);
document .addAuthor ("JFreeChart") ;

document .addSubject ("Demonstration") ;

document .open() ;
PdfContentByte cb = writer.getDirectContent();

PdfTemplate tp = cb.createTemplate(width, height);

Graphics2D g2 = tp.createGraphics(width, height, mapper);
Rectangle2D r2D = new Rectangle2D.Double(0, O, width, height);
chart.draw(g2, r2D);
g2.dispose();
cb.addTemplate(tp, 0, 0);

}

catch (DocumentException de) {
System.err.println(de.getMessage());

}

document.close();

}

/**%

* Creates a dataset, consisting of two series of monthly data. * *

*
* Qreturn the

*/

dataset.

public static XYDataset createDataset() {

TimeSeries
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new
s1.add(new

TimeSeries
s2.add (new
s2.add (new
s2.add (new
s2.add (new
s2.add (new
s2.add (new
s2.add (new
s2.add (new
s2.add (new
s2.add (new
s2.add (new
s2.add (new
s2.add (new
s2.add (new
s2.add (new
s2.add (new
s2.add (new
s2.add (new

sl = new TimeSeries("L&G European Index Trust", Month.class);

Month(2, 2001), 181.
Month(3, 2001), 167.
Month(4, 2001), 153.
Month(5, 2001), 167.
Month(6, 2001), 158.
Month(7, 2001), 148.
Month(8, 2001), 153.
Month(9, 2001), 142.

8);
3);
8);
6);
8);
3);
9);
7

Month(10, 2001), 123.2);
Month(11, 2001), 131.8);
Month(12, 2001), 139.6);

Month(1, 2002), 142.
Month(2, 2002), 138.
Month(3, 2002), 137.
Month(4, 2002), 143.
Month(5, 2002), 139.
Month(6, 2002), 137.
Month(7, 2002), 132.

9);
7);
3);
9);
8);
0);
8);

s2 = new TimeSeries("L&G UK Index Trust", Month.class);

Month(2, 2001), 129.
Month(3, 2001), 123.
Month(4, 2001), 117.
Month(5, 2001), 124.
Month(6, 2001), 122.
Month(7, 2001), 119.
Month(8, 2001), 116.
Month(9, 2001), 112.

6);
2);
2);
1);
6);
2);
5);
7);

Month(10, 2001), 101.5);
Month(11, 2001), 106.1);
Month(12, 2001), 110.3);

Month(1, 2002), 111.
Month(2, 2002), 111.
Month(3, 2002), 109.
Month(4, 2002), 113.
Month(5, 2002), 111.
Month(6, 2002), 108.
Month(7, 2002), 101.

TimeSeriesCollection dataset =
dataset.addSeries(s1);
dataset.addSeries(s2);

return dataset;

}

7);
0);

new TimeSeriesCollection();

public static void main(String[] args) {

try {

108

CHAPTER 16. EXPORTING CHARTS TO ACROBAT PDF 109

// create a chart...
XYDataset dataset = createDataset();
JFreeChart chart = ChartFactory.createTimeSeriesChart(
"Legal & General Unit Trust Prices",
"Date",
"Price Per Unit",
dataset,
true,
true,
false

);

// some additional chart customisation here...
XYPlot plot = chart.getXYPlot();
XYLineAndShapeRenderer renderer

= (XYLineAndShapeRenderer) plot.getRenderer();
renderer.setShapesVisible(true);
DateAxis axis = (DateAxis) plot.getDomainAxis();
axis.setDateFormatOverride(new SimpleDateFormat ("MMM-yyyy"));

// write the chart to a PDF file...
File fileName = new File(System.getProperty("user.home")
+ "/jfreechartl.pdf");
saveChartAsPDF (fileName, chart, 400, 300, new DefaultFontMapper());
}
catch (IOException e) {

System.out.println(e.getMessage());
}

}

Before you compile and run the application, remember to change the file name used for the PDF
file to something appropriate for your system! And include the jar files listed in section 16.5 on
your classpath.

16.7 Viewing the PDF File

After compiling and running the sample application, you can view the resulting PDF file using a
PDF viewer like Acrobat Reader (or, in my case, Gnome PDF Viewer):

Legal & General Unit Trust Prices

:E
=

5

3
o
8
o

Apr-2001 Jul-2001 Qct-2001 Jan-2002 Apr-2002 Jul-2002
Date

W LG European Index Trust @ L&G UK Index Trust |

"=”;J

Most PDF viewer applications provide zooming features that allow you to get a close up view of
your charts.

16.8 Unicode Characters

It is possible to use the full range of Unicode characters in JFreeChart and iText, as long as you
are careful about which fonts you use. In this section, I present some modifications to the previous
example to show how to do this.

CHAPTER 16. EXPORTING CHARTS TO ACROBAT PDF 110

16.8.1 Background

Internally, Java uses the Unicode character encoding to represent text strings. This encoding uses
sixteen bits per character, which means there are potentially 65,536 different characters available
(the Unicode standard defines something like 38,000 characters).

You can use any of these characters in both JFreeChart and iText, subject to one proviso: the font
you use to display the text must define the characters used or you will not be able to see them.

Many fonts are not designed to display the entire Unicode character set. The following website
contains useful information about fonts that do support Unicode (at least to some extent):

http://www.slovo.info/unifonts.htm

I have tried out the tahoma.ttf font with success. In fact, I will use this font in the example
that follows. The Tahoma font doesn’t support every character defined in Unicode, so if you have
specific requirements then you need to choose an appropriate font. At one point I had the Arial
Unicode MS font (arialuni.ttf) installed on my system—this has support for the full Unicode
character set, although this means that the font definition file is quite large (around 24 megabytes!)

16.8.2 Fonts, iText and Java

iText has to handle fonts according to the PDF specification. This deals with document portability
by allowing fonts to be (optionally) embedded in a PDF file. This requires access to the font
definition file.

Java, on the other hand, abstracts away some of the details of particular font formats with the use
of the Font class.

To support the Graphics2D implementation in iText, it is necessary to map Font objects from Java
to BaseFont objects in iText. This is the role of the FontMapper interface.

If you create a new DefaultFontMapper instance using the default constructor, it will already
contain sensible mappings for the logical fonts defined by the Java specification. But if you want
to use additional fonts—and you must if you want to use a wide range of Unicode characters—then
you need to add extra mappings to the DefaultFontMapper object.

16.8.3 Mapping Additional Fonts

I’ve decided to use the Tahoma font to display a chart title that incorporates some Unicode charac-
ters. The font definition file (tahoma.ttf) is located, on my system, in the directory:

/opt/sun-jdk-1.4.2.08/jre/lib/fonts

Here’s the code used to create the FontMapper for use by iText—I've based this on an example
written by Paulo Soares:

DefaultFontMapper mapper = new DefaultFontMapper();
mapper . insertDirectory("/opt/sun-jdk-1.4.2.08/jre/lib/fonts");
DefaultFontMapper.BaseFontParameters pp =
mapper . getBaseFontParameters("Tahoma") ;
if (pp!=null) {
pp.encoding = BaseFont.IDENTITY_H;

Now I can modify the code that creates the chart, in order to add a custom title to the chart (I've
changed the data and chart type also):

// create a chart...
TimeSeries series = new TimeSeries("Random Data");
Day current = new Day(1, 1, 2000);
double value = 100.0;
for (int i = 0; i < 1000; i++) {
try {
value = value + Math.random() - 0.5;

CHAPTER 16. EXPORTING CHARTS TO ACROBAT PDF 111

series.add(current, new Double(value));
current = (Day) current.next();
}
catch (SeriesException e) {
System.err.println("Error adding to series");
}
}
XYDataset data = new TimeSeriesCollection(series);
JFreeChart chart = ChartFactory.createTimeSeriesChart(
"Test",
"Date",
"Value",
data,
true,
false,
false

)

// Unicode test...
String text = "\u278A\u20A0\u20A1\u20A2\u20A3\u20A4\u20A5\u20A6\u20A7\u20A8\u20A9";
//String text = "hi";
Font font = new Font("Tahoma", Font.PLAIN, 12);
TextTitle subtitle = new TextTitle(text, font);
chart.addSubtitle(subtitle);

Notice that the subtitle (a random collection of currency symbols) is defined using escape sequences
to specify each Unicode character. This avoids any problems with encoding conversions when I save
the Java source file.

The output from the modified sample program is shown in figure 16.2. The example has been
embedded in this document in PDF format, so it is a good example of the type of output you can
expect by following the instructions in this document.

Test
O&¢CFEMMPAsRPY

102.5
100.0
97.5

95.0

Value

90.0
87.5

85.0

Jan-2000 Jul-2000 Jan-2001 Jul-2001 Jan-2002 Jul-2002
Date

Figure 16.2: A Unicode subtitle

Chapter 17

Exporting Charts to SV(G Format

17.1 Introduction

In this section, I present an example that shows how to export charts to SVG format, using
JFreeChart and Batik (an open source library for working with SVG).

17.2 Background
17.2.1 What is SVG?

Scalable Vector Graphics (SVG) is a standard language for describing two-dimensional graphics in
XML format. It is a Recommendation of the World Wide Web Consortium (W3C).

17.2.2 Batik

Batik is an open source toolkit, written in Java, that allows you to generate SVG content. Batik is
available from:

http://xml.apache.org/batik

At the time of writing, the latest stable version of Batik is 1.6.

17.3 A Sample Application
17.3.1 JFreeChart and Batik

JFreeChart and Batik can work together relatively easily because:

o JFreeChart draws all chart output using Java’s Graphics2D abstraction; and

e Batik provides a concrete implementation of Graphics2D that generates SVG output (SVGGraphics2D).

In this section, a simple example is presented to get you started using JFreeChart and Batik. The
example is based on the technique described here:

http://xml.apache.org/batik/svggen.html

112

CHAPTER 17. EXPORTING CHARTS TO SVG FORMAT 113

17.3.2 Getting Started

First, you should download Batik and install it according to the instructions provided on the Batik
web page.

To compile and run the sample program presented in the next section, you need to ensure that the
following jar files are on your classpath:

File: ‘ Description:
jcommon-1.0.16. jar Common classes from JFree.
jfreechart-1.0.13.jar | The JFreeChart class library.
batik-awt-util.jar Batik runtime files.
batik-dom. jar Batik runtime files.
batik-svggen. jar Batik runtime files.
batik-util. jar Batik runtime files.

17.3.3 The Application

Create a project in your favourite Java development environment, add the libraries listed in the
previous section, and type in the following program (or easier, grab a copy of the source from the
JFreeChart demo collection):

[¥ —mmmm e
* SVGExportDemo. java

* (C) Copyright 2002-2005, by Object Refinery Limited.
*
*/

package demo.svg;

import java.awt.geom.Rectangle2D;
import java.io.File;

import java.io.FileOutputStream;
import java.io.IOException;

import java.io.OutputStreamWriter;
import java.io.Writer;

import org.apache.batik.dom.GenericDOMImplementation;
import org.apache.batik.svggen.SVGGraphics2D;

import org.jfree.chart.ChartFactory;

import org.jfree.chart.JFreeChart;

import org.jfree.data.general.DefaultPieDataset;
import org.w3c.dom.DOMImplementation;

import org.w3c.dom.Document;

/%%
* A demonstration showing the export of a chart to SVG format.
*/

public class SVGExportDemo {

/¥
* Starting point for the demo.
*
* Qparam args ignored.
*/

public static void main(String[] args) throws IOException {

// create a dataset...

DefaultPieDataset data = new DefaultPieDataset();
data.setValue("Category 1", new Double(43.2));
data.setValue("Category 2", new Double(27.9));
data.setValue("Category 3", new Double(79.5));

// create a chart
JFreeChart chart = ChartFactory.createPieChart(
"Sample Pie Chart",
data,
true,
false,
false

);

// THE FOLLOWING CODE BASED ON THE EXAMPLE IN THE BATIK DOCUMENTATION...
// Get a DOMImplementation

CHAPTER 17. EXPORTING CHARTS TO SVG FORMAT

DOMImplementation domImpl
= GenericDOMImplementation.getDOMImplementation() ;

// Create an instance of org.w3c.dom.Document
Document document = domImpl.createDocument(null, "svg", null);

// Create an instance of the SVG Generator
SVGGraphics2D svgGenerator = new SVGGraphics2D(document) ;

// set the precision to avoid a null pointer exception in Batik 1.5
svgGenerator.getGeneratorContext () .setPrecision(6);

// Ask the chart to render into the SVG Graphics2D implementation
chart.draw(svgGenerator, new Rectangle2D.Double(0, 0, 400, 300), null);

// Finally, stream out SVG to a file using UTF-8 character to
// byte encoding
boolean useCSS = true;
Writer out = new OutputStreamWriter(

new FileOutputStream(new File("test.svg")), "UTF-8");
svgGenerator.stream(out, useCSS);

Running this program creates a file test.svg in SVG format.

17.3.4 Viewing the SVG

114

Batik includes a viewer application (“Squiggle”) which you can use to open and view the SVG file.

The Batik download includes instructions for running the viewer, effectively all you require is:

java -jar batik-squiggle.jar

The following screen shot shows the pie chart that we created earlier, displayed using the browser
application. A transformation (rotation) has been applied to the chart from within the browser:

File Edit Yiew Processing Go Tools 2

[Baos [aalag&& (S » 1O

E Location: |fi|e:fhomefdgiIhenfworkspacefjfreechan—demosftest.svg

| -

7

[P
-
céqk &

f/ \\\
// \\\\\\
4 ““\‘?f?o,
/r \\\\p,
/ e Y
KQ?\(\@ - h \g C

pc 15572131 [y: -105.374916 |

If you play about with the viewer, zooming in and out and applying various transformations to the

chart, you will begin to appreciate the power of the SVG format.

Chapter 18

Applets

18.1 Introduction

Subject to a couple of provisos, using JFreeChart in an applet is relatively straightforward. This
section provides a brief overview of the important issues and describes a working example that
should be sufficient to get you started.

File Edit View Go Bookmarks Tools Help
¢ B0QOm

P Getting Started L Latest Headlines

JFreeChart Applet
Demonstration

7 March 2005 | Home | Forums|

html ~| @co Gl

 contains a sample applet created using JrreeChart

The Applet Demo

Memory Usage

3,000,000

2500000
. 2000000
E L5000

= Loonoos

500,000

0
205915 w520 w5025 205930 25935 25940
Time

Figure 18.1: An applet using JFreeChart
Figure 18.1 shows a sample applet that uses JFreeChart. This applet is available online at:
http://www.object-refinery.com/jfreechart/applet.html

The source code for this applet appears later in this section.

18.2 Issues

The main issues to consider when developing applets (whether with or without JFreeChart) are:
e browser support;
e security restrictions;
e code size.

Be sure that you understand these issues before you commit significant resources to writing applets.

115

CHAPTER 18. APPLETS 116

18.2.1 Browser Support

The vast majority of web browsers provide support for the latest version of Java (JDK 1.5.0) and
will therefore have no problems running applets that use JFreeChart (recall that JFreeChart will
run on any version of the JDK from 1.3.1 onwards).

However, the vast majority of users on the web use (by default in most cases) the one web browser—
Microsoft Internet Explorer (MSIE)—that only supports a version of Java (JDK 1.1) that is now
hopelessly out-of-date. This is a problem, because applets that use JFreeChart will not work on
a default installation of MSIE. There is a workaround—users can download and install Sun’s Java
plugin—Dbut, like many workarounds, it is too much effort and inconvenience for many people. The
end result is a deployment problem for developers who choose to write applets.

This single issue has caused many developers to abandon their plans to develop applets' and instead
choose an easier-to-deploy technology such as Java Serviets (see the next chapter).

18.2.2 Security

Applets (and Java more generally) have been designed with security in mind. When an applet runs
in your web browser, it is restricted in the operations that it is permitted to perform. For example,
an applet typically will not be allowed to read or write to the local filesystem. Describing the details
of Java’s security mechanism is beyond the scope of this text, but you should be aware that some
functions provided by JFreeChart (for example, the option to save charts to PNG format via the
pop-up menu) will not work in applets that are subject to the default security policy. If you need
these functions to work, then you will need to study Java’s security mechanism in more detail.

18.2.3 Code Size

A final issue to consider is the size of the “runtime” code required for your applet. Before an applet
can run, the code (typically packed into jar files) has to be downloaded to the end user’s computer.
Clearly, for users with limited bandwidth connections, the size of the code can be an issue.

The JFreeChart code is distributed in a jar file that is around 1,000KB in size. That isn’t large—
especially when you consider the number and variety of charts that JFreeChart supports—but, at
the same time, it isn’t exactly optimal for a user on a dial-up modem connection. And you need to
add to that the JCommon jar file (around 290KB) plus whatever code you have for your applet.

As always with JFreeChart, you have the source code so you could improve this by repackaging the
JFreeChart jar file to include only those classes that are used by your applet (directly or indirectly).

18.3 A Sample Applet

As mentioned in the introduction, a sample applet that uses JFreeChart can be seen at the following
URL:?

http://www.object-refinery.com/jfreechart/applet.html

Two aspects of the sample applet are interesting, the source code that is used to create the applet
and the HTML file that is used to invoke the applet.

1For some people this issue won’t be a concern. For example, you may be developing applets for internal corporate
use, and your standard desktop configuration includes a browser that supports JDK 1.5.0. Alternatively, you may
be providing an applet for public use via the World Wide Web, but it is not critical that every user be able to run
the applet.

2If the applet does not work for you, please check that your web browser is configured correctly and supports
JDK 1.3.1 or later.

CHAPTER 18. APPLETS 117

18.3.1 The HTML

The HTML used to invoke the applet is important, since it needs to reference the necessary jar
files. The HTML applet tag used is:

<APPLET ARCHIVE="jfreechart-1.0.13-applet-demo. jar,
jfreechart-1.0.13. jar, jcommon-1.0.16. jar"
CODE="demo.applet.Appletl" width=640 height=260
ALT="You should see an applet, not this text.">
</APPLET>

Notice that three jar files are referenced. The first contains the applet class (source code in the
next section) only, while the remaining two jar files are the standard JFreeChart and JCommon
class libraries (the version numbers reflect the age of the demo rather than the current releases).

You can place the applet tag anywhere in your HTML file that you might place some other element
(such as an image).

18.3.2 The Source Code

The sample applet is created using the following source code (which is included in the “support
demos” package). There is very little applet-specific code here—we just extend JApplet:

[* ———————
* Appletl.java

* (C) Copyright 2002-2005, by Object Refinery Limited.
*/

package demo.applet;

import java.awt.BasicStroke;

import java.awt.Color;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JApplet;
import javax.swing.Timer;

import org.jfree.chart.ChartPanel;

import org.jfree.chart.JFreeChart;

import org.jfree.chart.axis.DateAxis;

import org.jfree.chart.axis.NumberAxis;

import org.jfree.chart.plot.XYPlot;

import org.jfree.chart.renderer.xy.XYItemRenderer;

import org.jfree.chart.renderer.xy.XYLineAndShapeRenderer;
import org.jfree.data.time.Millisecond;

import org.jfree.data.time.TimeSeries;

import org.jfree.data.time.TimeSeriesCollection;

/*%
* A simple applet demo.
*/
public class Appletl extends JApplet {

/** Time series for total memory used. */
private TimeSeries total;

/*x Time series for free memory. */
private TimeSeries free;

/*%
* Creates a new instance.
*/

public Appleti() {

// create two series that automatically discard data more than
// 30 seconds old...

this.total = new TimeSeries("Total", Millisecond.class);
this.total.setMaximumItemAge (30000) ;

this.free = new TimeSeries("Free", Millisecond.class);
this.free.setMaximumItemAge (30000) ;

TimeSeriesCollection dataset = new TimeSeriesCollection();
dataset.addSeries(total);

dataset.addSeries(free);

CHAPTER 18. APPLETS 118

DateAxis domain = new DateAxis("Time");
NumberAxis range = new NumberAxis("Memory");

XYItemRenderer renderer = new XYLineAndShapeRenderer(true, false);

XYPlot plot = new XYPlot(dataset, domain, range, renderer);
plot.setBackgroundPaint (Color.lightGray) ;
plot.setDomainGridlinePaint (Color.white);
plot.setRangeGridlinePaint (Color.white);
renderer.setSeriesPaint (0, Color.red);
renderer.setSeriesPaint (1, Color.green);
renderer.setSeriesStroke(0, new BasicStroke(1.5f));
renderer.setSeriesStroke(1, new BasicStroke(1.5f));

domain.setAutoRange (true) ;
domain.setLowerMargin(0.0);
domain.setUpperMargin(0.0);
domain.setTickLabelsVisible (true);

range.setStandardTickUnits (NumberAxis.createIntegerTickUnits());

JFreeChart chart = new JFreeChart(

"Memory Usage", JFreeChart.DEFAULT_TITLE_FONT, plot, true
);
chart.setBackgroundPaint (Color.white);
ChartPanel chartPanel = new ChartPanel(chart);
chartPanel.setPopupMenu(null) ;

getContentPane () .add (chartPanel) ;
new Appletl.DataGenerator().start();

}

/%
* Adds an observation to the ’total memory’ time series.
*
* Q@param y the total memory used.
*/
private void addTotalObservation(double y) {
total.add(new Millisecond(), y);
}

/*%
* Adds an observation to the ’free memory’ time series.
*
* @param y the free memory.
*/
private void addFreeObservation(double y) {
free.add(new Millisecond(), y);
}

/%
* The data generator.
*/

class DataGenerator extends Timer implements ActionListener {

/%%
* Constructor.
*/
DataGenerator() {
super (100, null);
addActionListener (this);
}

/%%
* Adds a new free/total memory reading to the dataset.
*
* Q@param event the action event.
*/
public void actionPerformed(ActionEvent event) {
long f = Runtime.getRuntime() .freeMemory();
long t = Runtime.getRuntime().totalMemory();
addTotalObservation(t);
addFreeObservation(f);

Chapter 19

Servlets

19.1 Introduction

The Java Servlets API is a popular technology for creating web applications. JFreeChart is well
suited for use in a servlet environment and, in this section, some examples are presented to help
those developers that are interested in using JFreeChart for web applications.

All the sample code in this section is available for download from:
http://wuw.object-refinery.com/jfreechart/premium/index.html

The file to download is jfreechart-1.0.13-demo.zip.

19.2 A Simple Servlet

The ServletDemol class implements a very simple servlet that returns a PNG image of a bar chart
generated using JFreeChart. When it is run, the servlet will return a raw image to the client (web
browser) which will display the image without any surrounding HTML—see figure 19.1. Typically,

File Edit View Go Bookmarks Tabs Help
@ Back ¥ B v @ @) ﬁHume aﬂnnkmarks @Fmd ¥
5D ‘ht‘tp:,’/‘lucamust:BOsufjfraa:hanlfserv\et/SarvlatDemu1 ¥ Go
Bar Chart
175
15.0
125
10.0
75
w50
2 s I
= oo
25 I | |
-5.0
75
100
125
c1 cz (=) c4
Category
WS. WS2 WS3 54 S5 MSG W57 56 mS9
Done. [

Figure 19.1: ServletDemol in a browser

you will not present raw output in this way, so this servlet is not especially useful on its own, but
the example is:

1To access this page you need to enter the username and password provided to you in the confirmation e-mail you
received when you purchased the JFreeChart Developer Guide.

119

CHAPTER 19. SERVLETS 120

e a good illustration of the request-response nature of servlets;

e useful as a test case if you are configuring a server environment and want to check that
everything is working.

We will move on to a more complex example later, showing how to request different charts using
HTML forms, and embedding the generated charts within HTML output.

Here is the code for the basic servlet:

[¥ ———mm e

* ServletDemol. java
* (C) Copyright 2002-2004, by Object Refinery Limited.
v

package demo;

import java.io.IOException;
import java.io.QOutputStream;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.jfree.chart.ChartFactory;

import org.jfree.chart.ChartUtilities;

import org.jfree.chart.JFreeChart;

import org.jfree.chart.plot.PlotOrientation;

import org.jfree.data.category.DefaultCategoryDataset;

/%%
* A basic servlet that returns a PNG image file generated by JFreeChart.
* This class is described in the JFreeChart Developer Guide in the
* "Servlets" chapter.
*/
public class ServletDemol extends HttpServlet {

/%%
* Creates a new demo.
*/
public ServletDemol() {
// nothing required
}

/%%
Processes a GET request.

*
*
* Q@param request the request.

* Q@param response the response.
*

*

*

Q@throws ServletException if there is a servlet related problem.
@throws IOException if there is an I/0 problem.
*/
public void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

OutputStream out = response.getOutputStream();
try {

DefaultCategoryDataset dataset = new DefaultCategoryDataset();
dataset.addValue(10.0, "S1", "Ci");
dataset.addValue(4.0, "S1i", "C2");
dataset.addValue(15.0, "S1i", "C3");
dataset.addValue(14.0, "S1", "C4");
dataset.addValue(-5.0, "S2", "C1");
dataset.addValue(-7.0, "S2", "C2");
dataset.addValue(14.0, "S2", "C3");
dataset.addValue(-3.0, "S2", "C4");
dataset.addValue(6.0, "S3", "C1");
dataset.addValue(17.0, "S83", "C2");
dataset.addValue(-12.0, "S3", "C3");
dataset.addValue(7.0, "S3", "C4");
dataset.addValue(7.0, "S4", "C1i");
dataset.addValue(15.0, "S4", "C2");
dataset.addValue(11.0, "S4", "C3");
dataset.addValue(0.0, "S4", "C4");
dataset.addValue(-8.0, "S5", "Ci1");

CHAPTER 19. SERVLETS

dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset

.addValue(-6.0, "S5", "C2");
.addValue(10.0, "S5", "C3");
.addValue(-9.0, "S5", "C4");
.addValue(9.0, "S6", "C1i");
.addValue(8.0, "S6", "C2");
.addValue(null, "S6", "C3");
.addValue(6.0, "S6", "C4");
.addValue(-10.0, "S7", "C1i");
.addValue(9.0, "S7", "C2");
.addValue(7.0, "S7", "C3");
.addValue(7.0, "S7", "C4");
.addValue(11.0, "88", "Ci");
.addValue(13.0, "88", "C2");
.addValue(9.0, "S8", "C3");
.addValue(9.0, "S8", "C4");
.addValue(-3.0, "S9", "Ci");
.addValue(7.0, "S9", "C2");
.addValue(11.0, "S9", "C3");
.addValue(-10.0, "S9", "C4");

JFreeChart chart = ChartFactory.createBarChart (
"Bar Chart",
"Category",
"Value",
dataset,
PlotOrientation.VERTICAL,
true, true, false

);

response.setContentType ("image/png") ;

ChartUtilities.writeChartAsPNG(out, chart, 400, 300);

}

catch (Exception e) {
System.err.println(e.toString());

}

finally {
out.close();

}

121

The doGet () method is called by the servlet engine when a request is made by a client (usually a

web browser). In response to the request, the servlet performs several steps:

e an OutputStream reference is obtained for returning output to the client;

it is receiving;

e a PNG image of the chart is written to the output stream;

a chart is created;

the output stream is closed.

19.3 Compiling the Servlet

the content type for the response is set to image/png. This tells the client what type of data

Note that the classes in the javax.servlet.* package (and sub-packages), used by the demo servlet,
are not part of the Java 2 Standard Edition (J2SE). In order to compile the above code using J2SE,
you will need to obtain a servlet.jar file. I’ve used the one that is redistributed with Tomcat (an

open source servlet engine written using Java). You can find out more about Tomcat at:

http://tomcat.apache.org/

You will also require the JFreeChart and JCommon jar files to compile the above servlet. Change
your working directory to jfreechart-1.0.13-demo, then enter the following command (on Windows,

you need to change the colons to semi-colons, and the forward slashes to backward slashes):

javac -classpath jfreechart-1.0.13.jar:lib/jcommon-1.0.16.jar:1lib/servlet.jar

source/demo/ServletDemol. java

CHAPTER 19. SERVLETS 122

This should create a ServletDemol.class file. The next section describes how to deploy this servlet
using Tomcat.

19.4 Deploying the Servlet

Servlets are deployed in the webapps directory provided by your servlet engine. In my case, I am
using Tomcat 5.5.15 on Ubuntu Linux 5.10, and the directory is:?

/home/dgilbert/apache-tomcat-5.5.15/webapps

Within the webapps directory, create a jfreechartl directory to hold the first servlet demo, then
create the following structure within the directory:

.../jfreechart1/WEB-INF/web.xml

.../jfreechart1/WEB-INF/lib/jfreechart-1.0.13. jar

.../jfreechart1/WEB-INF/1lib/jcommon-1.0.16. jar
.../jfreechart1/WEB-INF/classes/demo/ServletDemol.class

You need to create the web.xml file—it provides information about the servlet:

<?xml version="1.0" encoding="IS0-8859-1"7>

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
<servlet>
<servlet-name>
ServletDemol
</servlet-name>
<servlet-class>
demo.ServletDemol
</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>ServletDemol</servlet-name>
<url-pattern>/servlet/ServletDemol</url-pattern>
</servlet-mapping>
</web-app>

Once you have all these files in place, restart your servlet engine and type in the following URL
using your favourite web browser:

http://localhost:8080/jfreechartl/servlet/ServletDemol

If all is well, you will see the chart image displayed in your browser, as shown in figure 19.1.

19.5 Embedding Charts in HTML Pages

It is possible to embed a chart image generated by a servlet inside an HTML page (that is gen-
erated by another servlet). This is demonstrated by ServletDemo2, which is also available in the
jfreechart-1.0.13-demo.zip file.

ServletDemo2 processes a request by returning a page of HTML that, in turn, references another
servlet (ServletDemo2ChartGenerator) that returns a PNG image of a chart. The end result is a
chart embedded in an HTML page, as shown in figure 19.2.

Here is the code for ServletDemo2:

2Servlets are portable between different servlet engines, so if you are using a different servlet engine, consult the
documentation to find the location of the webapps folder.

CHAPTER 19. SERVLETS

/*

*

*
*

*/

File Edit Wiew Tab Zeftings Go Bookmarks Tools Help

I 4 Back /' l> / dp ﬁ \x\ stopfio0 3 & [ntn 806D letfServietDemoz /| F
JFreeChart Servlet Demo

Please choose a chart type:

& PieChart € Bar Chart ¢ Time Series Chart

Generate Chart

Pie Chart

Six

Five

Four

Two

Three

[mOne mTwo mThree Four Five mSix

Done. Y

Figure 19.2: ServletDemo2 in a browser

ServletDemo2. java

(C) Copyright 2002-2004, by Object Refinery Limited.

package demo;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/%%

*

*
*
*
*
*
*

*/

A basic servlet that generates an HTML page that displays a chart generated by
JFreeChart.

<p>

This servlet uses another servlet (ServletDemo2ChartGenerator) to create a PNG image
for the embedded chart.

<pP>

This class is described in the JFreeChart Developer Guide.

public class ServletDemo2 extends HttpServlet {

/%%
* Creates a new servlet demo.
*/
public ServletDemo2() {
// nothing required
}

~
*
*

Processes a POST request.
<p>
The chart.html page contains a form for generating the first request, after that

requests.

@param request the request.
Oparam response the response.

Q@throws ServletException if there is a servlet related problem.
@throws IOException if there is an I/0 problem.

LR R R T

*/
public void doPost (HttpServletRequest request, HttpServletResponse response)

the HTML returned by this servlet contains the same form for generating subsequent

123

CHAPTER 19. SERVLETS 124

throws ServletException, IOException {

PrintWriter out = new PrintWriter(response.getWriter());
try {

String param = request.getParameter("chart");

response.setContentType ("text/html");
out.println("<HTML>") ;

out.println("<HEAD>") ;

out.println("<TITLE>JFreeChart Servlet Demo 2</TITLE>");
out.println("</HEAD>");

out.println("<BODY>");

out.println("<H2>JFreeChart Servlet Demo</H2>");
out.println("<P>");

out.println("Please choose a chart type:");

out.println("<FORM ACTION=\"ServletDemo2\" METHOD=POST>");

String pieChecked = (param.equals("pie") 7 " CHECKED" : "");
String barChecked = (param.equals("bar") ? " CHECKED" : "");
String timeChecked = (param.equals("time") ? " CHECKED" : "");

out.println("<INPUT TYPE=\"radio\" NAME=\"chart\" VALUE=\"pie\"" + pieChecked
+ "> Pie Chart");
out.println("<INPUT TYPE=\"radio\" NAME=\"chart\" VALUE=\"bar\"" + barChecked
+ "> Bar Chart");
out.println("<INPUT TYPE=\"radio\" NAME=\"chart\" VALUE=\"time\"" + timeChecked
+ "> Time Series Chart");
out.println("<P>");
out.println("<INPUT TYPE=\"submit\" VALUE=\"Generate Chart\">");
out.println("</FORM>");

out.println("<P>");
out.println("<IMG SRC=\"ServletDemo2ChartGenerator?type=" + param
+ "\" BORDER=1 WIDTH=400 HEIGHT=300/>");
out.println("</BODY>");
out.println("</HTML>");
out.flush();
out.close();
}
catch (Exception e) {
System.err.println(e.toString());

}

finally {
out.close();

}

Notice how this code gets a reference to a Writer from the response parameter, rather than an
OutputStream as in the previous example. The reason for this is because this servlet will be returning
text (HTML), compared to the previous servlet which returned binary data (a PNG image).?

The response type is set to text/html since this servlet returns HTML text. An important point to
note is that the <1Me> tag in the HTML references another servlet (ServletDemo2ChartGenerator),
and this other servlet creates the required chart image. The actual chart returned is controlled by
the chart parameter, which is set up in the HTML using a <FORM> element.

Here is the source code for ServletDemo2ChartGenerator:

* ServletDemo2ChartGenerator. java

* (C) Copyright 2002-2004, by Object Refinery Limited.
*/
package demo;

import java.io.IOException;
import java.io.OutputStream;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;

3The Writer is wrapped in a PrintWriter in order to use the more convenient methods available in the latter
class.

CHAPTER 19. SERVLETS

imp:
imp:

imp
imp:
imp:
imp:
imp
imp
imp:
imp:
imp:
imp
imp

/*%
*
*
*
*
*
*
*

*/

values are ’pie’, ’bar’ and ’time’ (for time series).
<P>
This class is described in the JFreeChart Developer Guide.
public class ServletDemo2ChartGenerator extends HttpServlet {
/%%
* Default constructor.
*/

ort javax.servlet.http.HttpServletRequest;
ort javax.servlet.http.HttpServletResponse;

ort org.jfree.chart.ChartFactory;

ort org.jfree.chart.ChartUtilities;

ort org.jfree.chart.JFreeChart;

ort org.jfree.chart.plot.PlotOrientation;

ort org.jfree.data.category.DefaultCategoryDataset;
ort org.jfree.data.general.DefaultPieDataset;
ort org.jfree.data.time.Day;

ort org.jfree.data.time.TimeSeries;

ort org.jfree.data.time.TimeSeriesCollection;
ort org.jfree.data.xy.XYDataset;

ort org.jfree.date.SerialDate;

A servlet that returns one of three charts as a PNG image file.

referenced in the HTML generated by ServletDemo2.
<p>

This servlet is

Three different charts can be generated, controlled by the ’type’ parameter. The possible

public ServletDemo2ChartGenerator() {
// nothing required
}

/**
Process a GET request.

@param request the request.

Q@throws ServletException if there is a servlet related problem.

*
*
*
* Q@param response the response.
*
*
*

Q@throws IOException if there is an I/0 problem.
*/

public void doGet (HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

OutputStream out = response.getOutputStream();
try {
String type = request.getParameter("type");
JFreeChart chart = null;
if (type.equals("pie")) {
chart = createPieChart();
¥
else if (type.equals("bar")) {
chart = createBarChart();
}
else if (type.equals("time")) {
chart = createTimeSeriesChart();
}
if (chart != null) {
response.setContentType("image/png") ;

ChartUtilities.writeChartAsPNG(out, chart, 400, 300);

}

}

catch (Exception e) {
System.err.println(e.toString());

}
finally {
out.close();
}
}
/*%

* Creates a sample pie chart.
*

* Q@return a pie chart.
*/
private JFreeChart createPieChart() {

// create a dataset...

DefaultPieDataset data = new DefaultPieDataset();

125

CHAPTER 19. SERVLETS 126

data.setValue("One", new Double(43.2));
data.setValue("Two", new Double(10.0));
data.setValue("Three", new Double(27.5));
data.setValue("Four", new Double(17.5));
data.setValue("Five", new Double(11.0));
data.setValue("Six", new Double(19.4));

JFreeChart chart = ChartFactory.createPieChart(
"Pie Chart", data, true, true, false
)

return chart;

}

/*x
* Creates a sample bar chart.
*
* Q@return a bar chart.
*/
private JFreeChart createBarChart() {

DefaultCategoryDataset dataset = new DefaultCategoryDataset();
dataset.addValue(10.0, "S1", "C1");
dataset.addValue(4.0, "S1i", "C2");
dataset.addValue(15.0, "S1", "C3");
dataset.addValue(14.0, "S1", "C4");
dataset.addValue(-5.0, "S2", "C1");
dataset.addValue(-7.0, "S2", "C2");
dataset.addValue(14.0, "S2", "C3");
dataset.addValue(-3.0, "S2", "C4");
dataset.addValue(6.0, "S3", "C1");
dataset.addValue(17.0, "S3", "C2");
dataset.addValue(-12.0, "S3", "C3");
dataset.addValue(7.0, "S3", "C4");
dataset.addValue(7.0, "S4", "C1");
dataset.addValue(15.0, "S4", "C2");
dataset.addValue(11.0, "S4", "C3");
dataset.addValue(0.0, "S4", "C4");
dataset.addValue(-8.0, "S5", "Ci");
dataset.addValue(-6.0, "S5", "C2");
dataset.addValue(10.0, "S5", "C3");
dataset.addValue(-9.0, "S5", "C4");
dataset.addValue(9.0, "S6", "C1i");
dataset.addValue(8.0, "S6", "C2");
dataset.addValue(null, "S6", "C3");
dataset.addValue(6.0, "S6", "C4");
dataset.addValue(-10.0, "S7", "Ci");
dataset.addValue(9.0, "S7", "C2");
dataset.addValue(7.0, "S7", "C3");
dataset.addValue(7.0, "S7", "C4");
dataset.addValue(11.0, "S8", "C1");
dataset.addValue(13.0, "S8", "C2");
dataset.addValue(9.0, "S8", "C3");
dataset.addValue(9.0, "S8", "C4");
dataset.addValue(-3.0, "S9", "Ci1");
dataset.addValue(7.0, "S9", "C2");
dataset.addValue(11.0, "S9", "C3");
dataset.addValue(-10.0, "S9", "C4");

JFreeChart chart = ChartFactory.createBarChart3D(
"Bar Chart",
"Category",
"Value",
dataset,
PlotOrientation.VERTICAL,
true,
true,
false
)3

return chart;

}

/**%
* Creates a sample time series chart.
*
* @return a time series chart.
*/

private JFreeChart createTimeSeriesChart() {

// here we just populate a series with random data...

CHAPTER 19. SERVLETS 127

TimeSeries series = new TimeSeries("Random Data");
Day current = new Day(1l, SerialDate.JANUARY, 2001);
for (int i = 0; i < 100; i++) {
series.add(current, Math.random() * 100);
current = (Day) current.next();
}

XYDataset data = new TimeSeriesCollection(series);

JFreeChart chart = ChartFactory.createTimeSeriesChart(
"Time Series Chart", "Date", "Rate",
data, true, true, false

);

return chart;

To compile these two servlets, you can enter the following command at the command line:

javac -classpath jfreechart-1.0.13.jar:1ib/jcommon-1.0.16.jar:1lib/servlet.jar

source/demo/ServletDemo2. java source/demo/ServletDemo2ChartGenerator. java

The following sections describe the supporting files required for the servlet, and how to deploy
them.

19.6 Supporting Files

Servlets typically generate output for clients that access the web application via a web browser.
Most web applications will include at least one HTML page that is used as the starting point for
the application.

For the demo servlets above, the following index.html page? is used:
<HTML>

<HEADER>
<TITLE>JFreeChart : Basic Servlet Demo</TITLE>
</HEADER>

<BODY>
<H2>JFreeChart: Basic Servlet Demo</H2>
<P>
There are two sample servlets available:

a very basic servlet to generate a bar chart;</1i>
another servlet that allow you to select one of three sample charts. The selected chart is
displayed in an HTML page.</1i>

</BODY>

</HTML>

There are two hyperlinks in this page, the first references the first demo servlet (ServletDemol) and
the second references another HTML page, chart.html:

<HTML>

<HEADER>
<TITLE>JFreeChart Servlet Demo 2</TITLE>
</HEADER>

<BODY>
<H2>JFreeChart Servlet Demo</H2>
<pP>
Please choose a chart type:
<FORM ACTION="servlet/ServletDemo2" METHOD=POST>
<INPUT TYPE="radio" NAME="chart" VALUE="pie" CHECKED> Pie Chart
<INPUT TYPE="radio" NAME="chart" VALUE="bar"> Bar Chart

4You’ll find this file in the servlets directory of the demo distribution, along with the other servlet support files.

CHAPTER 19. SERVLETS 128

<INPUT TYPE="radio" NAME="chart" VALUE="time"> Time Series Chart
<P>
<INPUT TYPE="submit" VALUE="Generate Chart">
</FORM>
</BODY>

</HTML>

This second HTML page contains a <FORM> element used to specify a parameter for the second
servlet (ServletDemo2). When this servlet runs, it returns its own HTML that is almost identical to
the above but also includes an element with a reference to the ServletDemo2ChartGenerator
servlet.

19.7 Deploying Servlets

After compiling the demo servlets, they need to be deployed to a servlet engine, along with the sup-
porting files, so that they can be accessed by clients. Fortunately, this is relatively straightforward.

The first requirement is a web.xml file to describe the web application being deployed:

<?xml version="1.0" encoding="I1S0-8859-1"7>

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
<servlet>
<servlet-name>
ServletDemol
</servlet-name>
<servlet-class>
demo.ServletDemol
</servlet-class>
</servlet>
<servlet>
<servlet-name>
ServletDemo2
</servlet-name>
<servlet-class>
demo.ServletDemo2
</servlet-class>
</servlet>
<servlet>
<servlet-name>
ServletDemo2ChartGenerator
</servlet-name>
<servlet-class>
demo.ServletDemo2ChartGenerator
</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>ServletDemol</servlet-name>
<url-pattern>/servlet/ServletDemol</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>ServletDemo2</servlet-name>
<url-pattern>/servlet/ServletDemo2</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>ServletDemo2ChartGenerator</servlet-name>
<url-pattern>/servlet/ServletDemo2ChartGenerator</url-pattern>
</servlet-mapping>
</web-app>

This file lists the servlets by name, and specifies the class file that implements the servlet. The
actual class files will be placed in a directory where the servlet engine will know to find them (the
classes sub-directory within a directory specific to the application).

The final step is copying all the files to the appropriate directory for the servlet engine. In testing
with Tomcat, I created a jfreechart2 directory within Tomcat’s webapps directory. The index.html
and chart.html files are copied to this directory.

CHAPTER 19. SERVLETS 129

webapps/jfreechart2/index.html
webapps/jfreechart2/chart.html

Next, a subdirectory WEB-INF is created within the jfreechart2 directory, and the web.xml file is
copied to here.

webapps/jfreechart2/WEB-INF/web.xml

A classes subdirectory is created within WEB-INF to hold the .class files for the three demo servlets.
These need to be saved in a directory hierarchy matching the package hierarchy:

webapps/jfreechart2/WEB-INF/classes/demo/ServletDemol.class
webapps/jfreechart2/WEB-INF/classes/demo/ServlietDemo2.class
webapps/jfreechart2/WEB-INF/classes/demo/ServletDemo2ChartGenerator.class

Finally, the servlets make use of classes in the JFreeChart and JCommon class libraries. The jar
files for these libraries need to be added to a 1ib directory within WEB-INF. You will need:

webapps/jfreechart2/WEB-INF/1ib/jcommon-1.0.16. jar
webapps/jfreechart2/WEB-INF/1ib/jfreechart-1.0.13. jar

Now restart your servlet engine, and point your browser to:
http://localhost:8080/jfreechart2/index.html

If all the files have been put in the correct places, you should see the running servlet demonstration
(this has been tested using Tomcat 5.5.15 running on Ubuntu Linux 5.10 for AMDG64).

Chapter 20

Miscellaneous

20.1 Introduction

This section contains miscellaneous information about JFreeChart.

20.2 X11 / Headless Java

If you are using JFreeChart in a server environment running Unix / Linux, you may encounter the
problem that JFreeChart won’t run without X11. This is a common problem for Java code that
relies on AWT, see the following web page for further information:

http://java.sun.com/products/java-media/2D/forDevelopers/java2dfaq.html#xvib

There is also a thread in the JFreeChart forum with lots of info:

http://www.jfree.org/phpBB2/viewtopic.php?t=1012

20.3 Java Server Pages

Developers that are interested in using JFreeChart with JSP will want to check out the Cewolf
project:

http://cewolf.sourceforge.net/

Thanks to Guido Laures for leading this effort.

20.4 Loading Images

Images in Java are represented by the Image class. You can load an image using the createImage()
method in the Toolkit class, but you need to be aware that this method loads the image asyn-
chronously — in other words, the method returns immediately (before the image is loaded) and
the image loading continues in a separate thread. This can cause problems if you use the image
without first waiting for it to complete loading.

You can use the MediaTracker class to check the progress of an image as it loads. But in the case
where you just want to ensure that you have a fully loaded image, a useful technique is to use
Swing’s ImageIcon class to do the image loading for you:

ImageIcon icon = new ImageIcon("/home/dgilbert/temp/daylight.png");
Image image = icon.getImage();

In this case, the constructor doesn’t return until the image is fully loaded, so by the time you call
the getImage () method, you know that the image loading is complete.

130

Chapter 21

Packages

21.1 Overview

The following sections contain reference information for the classes, arranged by package, that make
up the JFreeChart class library.

Package: Description:
org.jfree.chart The main chart classes.
org.jfree.chart.annotations A simple framework for annotating charts.
org.jfree.chart.axis Axis classes and related interfaces.
org.jfree.chart.editor A framework (incomplete) for providing property editors
for charts.
org.jfree.chart.encoders Classes for writing image files.
org.jfree.chart.entity Classes representing chart entities.
org.jfree.chart.event The event classes.
org.jfree.chart.imagemap HTML image map utility classes.
org.jfree.chart.labels The item label and tooltip classes.
org.jfree.chart.needle Needle classes for the compass plot.
org.jfree.chart.panel Panel related classes and interfaces.
org.jfree.chart.plot Plot classes and interfaces.
org.jfree.chart.plot.dial Dial plot classes and interfaces.
org.jfree.chart.renderer The base package for renderers.
org.jfree.chart.renderer.category | Plug-in renderers for use with the CategoryPlot class.
org.jfree.chart.renderer.xy Plug-in renderers for use with the XYPlot class.
org.jfree.chart.servlet Servlet utility classes.
org.jfree.chart.title Chart title classes.
org.jfree.chart.urls Interfaces and classes for generating URLs in image maps.
org.jfree.chart.util Utility classes.
org.jfree.data Dataset interfaces and classes.
org.jfree.data.category The CategoryDataset interface and related classes.
org.jfree.data.contour The ContourDataset interface and related classes.
org.jfree.data.function The Function2D interface and related classes.
org.jfree.data.gantt Dataset interfaces and classes for Gantt charts.
org.jfree.data.general General dataset classes.
org.jfree.data.io General I/0O classes for datasets.
org.jfree.data.jdbc Some JDBC dataset classes.
org.jfree.data.statistics Classes that are used for generating statistics.
org.jfree.data.time Time-based dataset interfaces and classes.
org.jfree.data.time.ohlc Classes to represent an open-high-low-close dataset.
org.jfree.data.xml Classes for reading datasets from XML.
org.jfree.data.xy The XYDataset interface and related classes.

Additional information can be found in the HTML format API documentation that is generated
from the JFreeChart source files.

131

Chapter 22

Package: org.jfree.chart

22.1 Overview

This package contains the major classes and interfaces in the JFreeChart Class Library, including
the all important JFreeChart class.

22.2 ChartColor

22.2.1 Overview

This class defines some standard colors.

22.2.2 Methods

This class defines the following methods:

= public static Paint[] createDefaultPaintArray();
Returns an array of Paint instances. This array is used by the DefaultDrawingSupplier class as
the default series colors for most plots.

22.3 ChartFactory

22.3.1 Overview

This class contains a range of convenient methods for creating standard chart types. Typically you
need only create an instance of the appropriate dataset type, and supply a couple of parameters to
the ChartFactory and it will return a fully constructed JFreeChart instance.

HINT: The use of these methods is optional. Take a look at the source code for the
method you are using to see if it might be a better option to cut-and-paste the code into
your application, and then customise it to meet your requirements.

Starting with JFreeChart version 1.0.11, the ChartFactory has a “theme” attribute (an instance of
ChartTheme)—all charts created via the ChartFactory have this theme applied.

22.3.2 Chart Theme

To change the current theme:

= public static ChartTheme getChartTheme(); [1.0.11]
Returns the theme that is applied to all new charts created with the methods in the ChartFactory
class.

132

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 133

= public static void setChartTheme(ChartTheme theme); [1.0.11]
Sets the theme that will be applied to all new charts created with the ChartFactory methods.
If theme is null, this method throws an IllegalArgumentException.

Note that the ChartUtilities.applyCurrentTheme (JFreeChart) method references this attribute.

22.3.3 Pie Charts

To create a regular pie chart, you can use either of the following methods:

= public static JFreeChart createPieChart(String title, PieDataset dataset,

boolean legend, boolean tooltips, Locale locale); [1.0.7]

Creates a pie chart based on the specified dataset (null permitted), with tooltips formatted
according to the specified locale. The resulting chart is constructed using a PiePlot.

= public static JFreeChart createPieChart(String title, PieDataset dataset,

boolean legend, boolean tooltips, boolean urls);

Creates a pie chart based on the specified dataset (null permitted). The chart is constructed
using a PiePlot. Note that URL support is only applicable to the creation of HTML image
maps.

To create a pie chart with a “3D effect”:

= public static JFreeChart createPieChart3D(String title, PieDataset dataset,

boolean legend, boolean tooltips, Locale locale); [1.0.7]

Creates a pie chart with a 3D perspective, using the specified dataset (which may be null).
The chart is constructed using a PiePlot3D. The locale is used to create default formatters for
the tool tip generator.

= public static JFreeChart createPieChart3D(String title, PieDataset dataset,

boolean legend, boolean tooltips, boolean urls)

Creates a 3D pie chart for the specified PieDataset (null permitted). The chart is constructed
using a PiePlot3D.

To create a single chart containing multiple pie charts:

= public static JFreeChart createMultiplePieChart(String title, CategoryDataset dataset,
TableOrder order, boolean legend, boolean tooltips, boolean urls);

Creates a multiple pie chart for the specified CategoryDataset. This chart is constructed using a
MultiplePiePlot. The order argument can be either TableOrder.BY_ROW or TableOrder.BY_COLUMN.

To create a single chart containing multiple pie charts with a “3D effect”:

= public static JFreeChart createMultiplePieChart3D(String title, CategoryDataset dataset,
TableOrder order, boolean legend, boolean tooltips, boolean urls);

Creates a multiple pie chart for the specified CategoryDataset. This chart is constructed using a
MultiplePiePlot. The order argument can be either TableOrder.BY_ROW or TableOrder.BY_COLUMN.

A special case of pie chart can be created to display the “difference” between two datasets:

= public static JFreeChart createPieChart(String title, PieDataset dataset,

PieDataset previousDataset, int percentDiffForMaxScale, boolean greenForIncrease,

boolean legend, boolean tooltips, Locale locale, boolean subTitle, boolean showDifference);
[1.0.7]

Returns a pie chart that displays the difference between the two supplied datasets.

= public static JFreeChart createPieChart(String title, PieDataset dataset,

PieDataset previousDataset, int percentDiffForMaxScale, boolean greenForlIncrease,

boolean legend, boolean tooltips, boolean urls, boolean subTitle, boolean showDifference);
As above.

A ring chart is a customised form of pie chart:

= public static JFreeChart createRingChart(String title, PieDataset dataset, boolean legend,
boolean tooltips, Locale locale); [1.0.7]

Creates a ring chart based on the supplied dataset (which may be null). Numerical values in
the default tool tip generator will be formatted according to the specified locale.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 134

= public static JFreeChart createRingChart(String title, PieDataset dataset, boolean legend,
boolean tooltips, boolean urls);

Creates a ring chart based on the supplied dataset (which may be null). Note that URL
support is only applicable for charts that are used to create HTML image maps.

22.3.4 Bar Charts

To create a bar chart:

= public static JFreeChart createBarChart(String title, String categoryAxisLabel,

String valueAxisLabel, CategoryDataset dataset, PlotOrientation orientation,

boolean legend, boolean tooltips, boolean urls);

Creates a horizontal or vertical bar chart for the given CategoryDataset (see the BarRenderer
class documentation for an example).

To create a bar chart with a “3D effect”:

= public static JFreeChart createBarChart3D(String title, String categoryAxisLabel,
String valueAxisLabel, CategoryDataset dataset, PlotOrientation orientation,

boolean legend, boolean tooltips, boolean urls);

Creates a bar chart with 3D effect for the given CategoryDataset (see the BarRenderer3D class
documentation for an example).

To create a stacked bar chart:

= public static JFreeChart createStackedBarChart(String title, String categoryAxisLabel,
String valueAxisLabel, CategoryDataset data, PlotOrientation orientation,

boolean legend, boolean tooltips, boolean urls);

Creates a stacked bar chart for the given CategoryDataset.

To create a stacked bar chart with a “3D effect”:

= public static JFreeChart createStackedBarChart3D(String title, String categoryAxisLabel,
String valueAxisLabel, CategoryDataset data, PlotOrientation orientation,

boolean legend, boolean tooltips, boolean urls);

Creates a stacked bar chart with 3D effect for the given CategoryDataset.

To create a bar chart using an IntervalXYDataset (bearing in mind that you can use the XYBarDataset
wrapper to convert any XYDataset to the required type):

= public static JFreeChart createXYBarChart(String title, String xAxisLabel,

boolean dateAxis, String yAxisLabel, IntervalXYDataset dataset, PlotOrientation orientation,
boolean legend, boolean tooltips, boolean urls);

Creates an XY bar chart for the given IntervalXYDataset. The dateAxis argument allows you
to select whether the chart is created with a DateAxis or a NumberAxis for the domain axis. The
chart created with this method uses a XYPlot and XYBarRenderer.

22.3.5 Line Charts

To create a line chart based on a CategoryDataset:

= public static JFreeChart createlLineChart(String title, String categoryAxisLabel,

String valueAxisLabel, CategoryDataset dataset, PlotOrientation orientation,

boolean legend, boolean tooltips, boolean urls);

Creates a line chart for the given CategoryDataset. The chart will be constructed with a
CategoryPlot and a LineAndShapeRenderer.

= public static JFreeChart createlLineChart3D(String title, String categoryAxisLabel,
String valueAxisLabel, CategoryDataset dataset, PlotOrientation orientation,

boolean legend, boolean tooltips, boolean urls);

Creates a line chart for the given CategoryDataset, with a pseudo 3D effect. The chart will be
constructed with a CategoryPlot and a LineRenderer3D.

To create a line chart based on a XYDataset:

CHAPTER 22. PACKAGE: ORG.JFREE.CHART

= public static JFreeChart createXYLineChart(String title, String xAxisLabel,
String yAxisLabel, XYDataset dataset, PlotOrientation orientation,

boolean legend, boolean tooltips, boolean urls)

Creates a XY line chart for the given XYDataset.

22.3.6 Other Chart Types

To create a scatter plot:

= public static JFreeChart createScatterPlot(String title, String xAxisLabel,
String yAxisLabel, XYDataset data, PlotOrientation orientation, boolean legend,
boolean tooltips, boolean urls);

Creates a scatter plot for the given XYDataset.

To create a time series chart:

= public static JFreeChart createTimeSeriesChart(String title, String timeAxisLabel,
String valueAxisLabel, XYDataset data, boolean legend, boolean tooltips, boolean urls);
Creates a time series chart for the given XYDataset.

To create a high-low-open-close chart:

= public static JFreeChart createHighLowChart(String title, String timeAxisLabel,
String valueAxisLabel, OHLCDataset dataset, Timeline timeline, boolean legend);
Creates a high-low-open-close chart for the given OHLCDataset.

To create a candlestick chart:

= public static JFreeChart createCandlestickChart(String title, String timeAxisLabel,
String valueAxisLabel, OHLCDataset data, boolean legend);
Creates a candlestick chart for the given OHLCDataset.

To create an area chart using data from a XYDataset:

= public static JFreeChart createXYAreaChart(String title, String xAxisLabel,
String yAxisLabel, XYDataset dataset, PlotOrientation orientation,
boolean legend, boolean tooltips, boolean urls);

Creates an area chart for the specified dataset. The chart that is created uses a XYPlot and a

XYAreaRenderer.
To create a stacked area chart using data from a TableXYDataset:

= public static JFreeChart createStackedXYAreaChart(String title, String xAxisLabel,
String yAxisLabel, TableXYDataset dataset, PlotOrientation orientation,
boolean legend, boolean tooltips, boolean urls);

Creates a stacked area chart for the specified dataset (notice that the dataset must be a
TableXYDataset for stacking). The chart that is created uses a XYPlot and a StackedXYAreaRenderer.

To create a box-and-whisker chart where the domain values are categories:

= public static JFreeChart createBoxAndWhiskerChart(String title, String categoryAxisLabel,
String valueAxisLabel, BoxAndWhiskerCategoryDataset dataset, boolean legend); [1.0.4]
Creates a box-and-whisker chart from the specified dataset. This chart will use a CategoryPlot
and a BoxAndWhiskerRenderer.

To create a box-and-whisker chart where the domain values are numbers or dates:

= public static JFreeChart createBoxAndWhiskerChart(String title, String timeAxisLabel,
String valueAxisLabel, BoxAndWhiskerXYDataset dataset, boolean legend);
Creates a box-and-whisker chart from the specified dataset. This chart will use a XYPlot and a

BoxAndWhiskerRenderer

135

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 136

22.3.7 Notes

This class contains methods for common chart types only. There are many other chart types that
you can create by mixing and matching plots and renderers. It is worthwhile to review the source
code for the methods in this class, then consider how you could substitute different renderers or
axes to create different types of charts. Don’t be afraid to copy, paste and modify the code from
this class!

22.4 ChartFrame

22.4.1 Overview

A frame containing a chart within a ChartPanel.

22.4.2 Constructors

There are two constructors:

= public ChartFrame(String title, JFreeChart chart);
Creates a new ChartFrame containing the specified chart.

The second constructor gives you the opportunity to request that the chart is contained within a
JScrollPane:

= public ChartFrame(String title, JFreeChart chart, boolean scrollPane);
Creates a new ChartFrame containing the specified chart. The scrollPane flag indicates whether
or not the chart should be displayed within a ScrollPane.

22.4.3 Methods

To access the chart’s panel:

= public ChartPanel getChartPanel();
Returns the panel that contains the chart.
Notes

This class is used in a few demo applications, but you won’t generally need to use it yourself—
instead, you'll most likely create a ChartPanel and add that directly to your own forms.

22.5 ChartMouseEvent

22.5.1 Overview

An event generated by the ChartPanel class to represent a mouse click or a mouse movement over
a chart. These events are passed to listeners via the ChartMouseListener interface.

22.5.2 Constructor

To create a new event:

= public ChartMouseEvent (JFreeChart chart, MouseEvent trigger, ChartEntity entity);
Creates a new event for the specified chart. The event also records the underlying trigger
event and the entity underneath the mouse pointer (possibly null).

Event objects will usually be created by the ChartPanel class and sent to all registered listeners—you
won’t normally need to create an instance of this class yourself.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 137

22.5.3 Methods

Use the following methods to access the attributes for the event:

= public JFreeChart getChart();
Returns the chart (never null) that the event relates to.

= public MouseEvent getTrigger();

Returns the underlying mouse event (never null) that triggered the generation of this event.
This contains information about the mouse location, among other things. Note that the
mouse location here is given in coordinates relative to the source component (which is the
ChartPanel)—to convert to the corresponding (z, y) values in data space, you need to take
into account the axis ranges and the current data area (see MouseListenerDemo4.java for an
example).

= public ChartEntity getEntity();

Returns the chart entity underneath the mouse pointer (this may be null). There are many
subclasses of the ChartEntity class, and by determining which subclass is used you can find
additional information about the entity “underneath” the mouse pointer.

22.5.4 Notes

Some points to note:

e to receive notification of these events, an object first needs to implement the ChartMouseListener
interface and then register itself with a ChartPanel object, via the addChartMouseListener ()
method (see section 22.7.10);!

e some demos (MouseListenerDemol-4.java) are included in the JFreeChart demo collection.

See Also

ChartPanel.

22.6 ChartMouseListener

22.6.1 Overview

An interface that defines the callback methods for a chart mouse listener. Any class that implements
this interface can be registered with a ChartPanel and receive notification of mouse events. This
mechanism can be used to implement interactive charts in Swing applications (information about
the chart element at the current mouse location is contained in the ChartMouseEvent object). This
is a low-level mechanism, but very flexible.

22.6.2 Methods

This receives notification of mouse click events:

w void chartMouseClicked(ChartMouseEvent event);
A callback method for receiving notification of a mouse click on a chart.

This method receives notification of mouse movement events:

= void chartMouseMoved(ChartMouseEvent event);
A callback method for receiving notification of a mouse movement event on a chart.

1t should be obvious, but apparently needs stating in some cases, that the mouse events relate to JFreeChart
usage in a Swing-based application—if you are developing web-applications (and don’t want to employ applets or
Java Web Start) then you’ll need to rely on chart images plus HTML image maps (all of which JFreeChart can help
with, but none of which have anything to do with ChartMouseEvents).

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 138

22.6.3 Notes

Some points to note:

e some demo applications (MouseListenerDemol-4.java) are included in the JFreeChart demo
collection.

See Also

ChartMouseEvent.

22.7 ChartPanel

22.7.1 Overview

A panel that provides a convenient means to display a JFreeChart instance in a Swing-based user-
interface (extends javax.swing.JPanel). The ChartPanel class provides support for:

e displaying tool tips;

e zooming via mouse drags and/or the mouse-wheel;

panning of charts using mouse drags with a modifier key;

offscreen buffering to improve performance when redrawing overlapping frames;

chart overlays (since version 1.0.13).

In addition, the panel can be set up to include a popup menu providing access to:

e chart properties — the property editors are incomplete, but allow you to customise many chart
properties;

e printing — print a chart via the standard Java printing facilities;

e saving — write the chart to a PNG format file;

e zooming — zoom in or out by adjusting the axis ranges;

e copy-to-clipboard — copy a chart to the clipboard as an image.

All of these features are used in the demonstration applications included with the JFreeChart
Developer Guide.

22.7.2 Constructors

The standard constructor accepts a JFreeChart as the only parameter, and creates a panel that
displays the chart:

= public ChartPanel(JFreeChart chart);
Creates a new panel for displaying the specified chart.

By default, the panel is automatically updated whenever the chart changes (for example, if you
modify the range for an axis, the chart will be redrawn automatically).

= public ChartPanel(JFreeChart chart, boolean useBuffer);

Creates a new panel for displaying the specified chart. If useBuffer is true, the panel draws
the chart to an off-screen buffered image, then copies the image to the screen as required.
For charts that draw slowly (for example, those with a large number of data points), this will
improve performance by ensuring that the chart is only redrawn when necessary.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 139

22.7.3 The Chart
The chart that is displayed by the panel is accessible via the following methods:

= public JFreeChart getChart();
Returns the chart that is displayed in the panel.

= public void setChart(JFreeChart chart);
Sets the chart that is displayed in the panel. The panel registers with the chart as a change
listener, so that it can repaint the chart whenever it changes.

22.7.4 Clipboard Support

In JFreeChart version 1.0.13, support for copying charts to the clipboard (as images) has been
added:

w public void doCopy(); [1.0.13]
Copies the current chart to the system clipboard as an image. This mechanism makes use of
the ChartTransferable class.

22.7.5 Tooltips

The panel includes support for displaying tool tips (assuming that tool tips have been generated by
the plot or renderer). To disable (or re-enable) the display of tool tips, use the following method:

= public void setDisplayToolTips(boolean flag);
Switches the display of tool tips on or off for this panel.

The panel uses the standard Swing tool tip mechanism, which means that the tool tip timings
(initial delay, dismiss delay and reshow delay) can be controlled application-wide using the usual
Swing API calls. In addition, the panel has a facility to temporarily override the application wide
settings while the mouse pointer is within the bounds of the panel:

= public void setInitialDelay(int delay);
Sets the initial delay (in milliseconds) before tool tips are displayed.

= public void setDismissDelay(int delay);
Sets the delay (in milliseconds) before tool tips are dismissed.

= public void setReshowDelay(int delay) ;
Sets the delay (in milliseconds) before tool tips are reshown.

22.7.6 Panning

In JFreeChart version 1.0.13, support has been added for panning charts by holding down a modifier
key and dragging the mouse. This will work automatically for any chart with a plot that implements
the Pannable interface. Note that the modifier key is CTRL on most platforms, but ALT on
MacOSX.

22.7.7 Zooming

The chart panel supports chart zooming for many types of charts. From the user perspective,
zooming is initiated either via the popup menu or via a mouse drag on the displayed chart. The
following methods are used to switch zooming on or off, for one or both axes:

= public boolean isDomainZoomable();
Returns true if the panel will update the domain axis bounds in response to zoom requests,
and false otherwise.

= public void setDomainZoomable(boolean flag);
Sets the flag that controls whether or not the panel will update the domain axis bounds (as-
suming the axis supports this) in response to zoom requested.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 140

= public boolean isRangeZoomable();
Returns true if the panel will update the range axis bounds in response to zoom requests, and
false otherwise.

= public void setRangeZoomable(boolean flag);
Sets the flag that controls whether or not the panel will update the range axis bounds (assuming
the axis supports this) in response to zoom requested.

= public void setMouseZoomable(boolean flag);
A convenience method that sets the domainZoomable and rangeZoomable flags simultaneously.

= public void setMouseZoomable(boolean flag, boolean fillRectangle)
A convenience method that sets the domainZoomable and rangeZoomable flags simultaneously.

The fillZoomRectangle flag controls the appearance of the rectangle drawn on the panel to show
the zoom area while the user drags the mouse over the chart panel:

= public boolean getFillZoomRectangle();
Returns true if the zoom rectangle should be filled, and false if it should be drawn as an outline
only. The default value is true.

= public void setFillZoomRectangle(boolean flag);

Sets the flag that controls whether or not the zoom rectangle is filled or drawn as an outline.
The zoom rectangle is displayed while the mouse is dragged within the chart panel, to highlight
the area that will be displayed in the chart once the zoom is completed.

To control the color of the zoom rectangle:

= public Paint getZoomFillPaint(); [1.0.13]
Returns the paint used to fill the zoom rectangle. The default value is Color(o, 0, 255, 63), a
semi-transparent blue.

= public void setZoomFillPaint(Paint paint); [1.0.13]
Sets the zoom fill paint. If paint is null, this method throws an IllegalArgumentException.

= public Paint getZoomOutlinePaint(); [1.0.13]
Returns the paint used to draw the zoom rectangle outline. The default value is Color.blue.

= public void setZoomOutlinePaint(Paint paint); [1.0.13]
Sets the zoom outline paint. If paint is null, this method throws an IllegalArgumentException.

The zoom trigger distance specifies the minimum distance that the mouse must be dragged before
a zoom operation is triggered:

= public int getZoomTriggerDistance();
Returns the minimum distance (in Java2D units) that the mouse must be dragged in order to
trigger a zoom operation. The default value is 10.

= public void setZoomTriggerDistance(int distance);
Sets the minimum distance (in Java2D units) that the mouse must be dragged in order to
trigger a zoom operation.

The zooming operations interact with the plot via the Zoomable interface—plots that do not imple-
ment this interface will not be zoomable.

In version 1.0.13, support for zooming via the mouse wheel was added:

= public boolean isMouseWheelEnabled(); [1.0.13]
Returns true if mouse wheel zooming is enabled, and false otherwise. The default value is
false.

= public void setMouseWheelEnabled(boolean flag); [1.0.13]
Enables or disables mouse wheel zooming. This method will do nothing if the JRE version is
not 1.4.2 or later (because there is no mouse wheel support in earlier JRESs).

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 141

22.7.8 The Popup Menu

The chart panel has a popup menu that provides menu items for property editing, saving charts
to PNG, printing charts, and some zooming options. The constructors provide options for includ-
ing/excluding any of these options.

You can access the popup menu with the following methods:

= public JPopupMenu getPopupMenu();
Returns the popup menu for the panel.

= public void setPopupMenu(JPopupMenu popup) ;
Sets the popup menu for the panel. Set this to null if you don’t want a popup menu at all.

A couple of the functions that can be accessed via the popup menu can also be called via the API:

= public void doEditChartProperties(); [1.0.3]
Presents a chart property editor that allows some chart properties to be updated. As mentioned
elsewhere, the property editors are incomplete.

= public void doSaveAs() throws IOException;
Presents a file chooser component that allows the user to save the chart to a file in PNG format.

= public void createChartPrintJob();
Presents a print dialog and prints the chart to a single page.

A default directory can be specified for the “save as” option:

= public File getDefaultDirectoryForSaveAs(); [1.0.7]
Returns the default directory presented in the file chooser when saving a chart via the “Save
As...” menu item. The default value is null, which means the user’s home directory is selected.

= public void setDefaultDirectoryForSaveAs(File directory); [1.0.7]

Sets the default directory that is presented in the file chooser when saving a chart via the
“Save As..” menu item. If you set this to null, the user’s home directory will be used
as the default. If the directory argument is not in fact a directory, this method throws an
IllegalArgumentException.

22.7.9 Overlays

The overlay mechanism, introduced in version 1.0.13, provides the ability to draw in a layer above the
chart. The underlying chart will also be repainted when the overlay is updated, but if the off-screen
buffer mechanism is used then the chart repaint is simply an image redraw, so the performance is
good compared to redrawing the entire chart.

= public void addOverlay(Overlay overlay); [1.0.13]
Adds an overlay to the panel and repaints the panel.

= public void removeOverlay(Overlay overlay); [1.0.13]
Removes an overlay from the panel and repaints the panel.

= public void overlayChanged(OverlayChangeEvent event); [1.0.13]
Receives notification of a change to an overlay, and responds by repainting the panel.

22.7.10 Chart Mouse Events

Any object that implements the ChartMouseListener interface can register with the panel to receive
notification of any mouse events that relate to the chart.

= public void addChartMouseListener(ChartMouseListener listener)
Adds an object to the list of objects that should receive notification of any ChartMouseEvents
that occur.

= public void removeChartMouseListener (ChartMouseListener listener);
Removes an object from the list of objects that should receive notification of chart mouse
events.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 142

22.7.11 Chart Scaling

JFreeChart is designed to draw charts at arbitrary sizes. In the case of the ChartPanel class, the
chart is drawn to fit the current size of the panel (which is usually determined externally by a layout
manager). When the panel gets very small (or very large) the layout procedure used by JFreeChart
may not produce good results. To counteract this, the ChartPanel class specifies minimum and
maximum drawing thresholds. When the panel dimensions fall below the minimum threshold (or
above the maximum threshold) the chart is drawn at the maximum (minimum) size then scaled
down (up) to fit the actual panel size.

You can control the threshold values with the following methods:

= public int getMinimumDrawWidth();
Returns the lower threshold for the chart drawing width. The default is 300 pixels.

= public void setMinimumDrawWidth(double width) ;
Sets the lower threshold for the chart drawing width. If the panel is narrower than this, the
chart is drawn at the specified width then scaled down to fit the panel.

= public int getMinimumDrawHeight();
Returns the lower threshold for the chart drawing height. The default is 200 pixels.

= public void setMinimumDrawHeight(double height);
Sets the lower threshold for the chart drawing height. If the panel is shorter than this, the
chart is drawn at the specified height then scaled down to fit the panel.

For the maximum drawing size threshold, you can use the following methods:

= public int getMaximumDrawWidth();
Returns the upper threshold for the chart drawing width. The default value is 1024 pixels.

= public void setMaximumDrawWidth(double width) ;
Sets the upper threshold for the chart drawing width. If the panel is wider than this, the chart
is drawn at the specified width then scaled up to fit the panel.

= public int getMaximumDrawHeight();
Returns the upper threshold for the chart drawing height. The default value is 768 pixels.

= public void setMaximumDrawHeight(double height);
Sets the upper threshold for the chart drawing height. If the panel is taller than this, the chart
is drawn at the specified height then scaled up to fit the panel.

When chart scaling is being applied, the getScreenDataArea() can be used to determine the data
area in the coordinate space of the panel.

22.7.12 Other Methods

To get information about the entities in the chart drawn within the panel:

= public ChartRenderingInfo getChartRenderingInfo();

Returns a structure containing information about the chart drawn within the panel. Note that
any dimensions in this structure do not take into account the scaling that may be applied by
the panel.

Some convenience methods can return information about the chart. To find the data area for a
chart (that is, the area inside the axes where the data is plotted) in the coordinate space of the
panel, you can use the following methods:

= public Rectangle2D getScreenDataArea();
Returns the area within which the data is plotted, in screen coordinates. This takes into
account any scaling applied by the panel—see section 22.7.11.

= public Rectangle2D getScreenDataArea(int x, int y);

Returns the area within which the data is plotted on the screen, for the subplot at the screen
coordinate (x, y). The returned data area is also specified in screen coordinates—this takes
into account any scaling applied by the panel. If the chart doesn’t have any subplots, this
method is equivalent to the getScreenDataArea() method (that is, it returns the data area for
the main plot).

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 143

22.7.13 Notes

The size of the ChartPanel is determined by the layout manager used to arrange components in
your user interface. In some cases, the layout manager will respect the preferred size of the panel,
which you can set like this:

chartPanel .setPreferredSize(new Dimension(500, 270));

This class implements the Printable interface, to provide a simple mechanism for printing a chart.
An option in the panel’s popup menu calls the createPrintJob() method. The print job ends up
calling the print() method to draw the chart on a single piece of paper.

If you need greater control over the printing process—for example, you want to display several
charts on one page—you can write your own implementation of the Printable interface (in any
class that has access to the chart(s) you want to print). The implementation incorporated with the
ChartPanel class is a basic example, provided for convenience only.

See Also

JFreeChart.

22.8 ChartRenderingInfo

22.8.1 Overview

This class can be used to collect information about a chart as it is rendered, particularly information
concerning the dimensions of various sub-components of the chart.

In the current implementation, four pieces of information are recorded for most chart types:

e the chart area;
e the plot area (including the axes);
e the data area (“inside” the axes);

e the dimensions and other information (including tool tips) for the entities within a chart;

You have some control over the information that is generated. For instance, tool tips will not be
generated unless you set up a generator in the renderer.

22.8.2 Constructors

The default constructor:

= public ChartRenderingInfo();
Creates a ChartRenderingInfo object. Entity information will be collected using an instance of
StandardEntityCollection.

An alternative constructor allows you to supply a specific entity collection:

= public ChartRenderingInfo(EntityCollection entities);
Creates a ChartRenderingInfo object.

22.8.3 Methods

To get the area in which the chart is drawn:

= public Rectangle2D getChartArea();
Returns the area in which the chart has been drawn.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 144

= public void setChartArea(Rectangle2D area);

Sets the area (in Java2D space) into which the chart has been drawn. This method is called
by JFreeChart, you won’t normally call it yourself. You should note that this method records
(after the fact) where a chart has been drawn—setting this attribute has no impact on the
chart itself.

To access the entity collection:

= public EntityCollection getEntityCollection();
Returns the entity collection (which may be null).

= public void setEntityCollection(EntityCollection entities);

Sets the entity collection. If you set this to null, no entity information is retained as the chart
is rendered (which saves a lot of resources, but means that tooltips and HTML image maps
cannot be generated).

= public void clear();
Clears all the information from this instance.

= public PlotRenderingInfo getPlotInfo();
Returns the PlotRenderingInfo state object for this instance. You can use this to obtain ren-
dering information for the chart’s plot.

22.8.4 Equals, Cloning and Serialization
This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this instance for equality with an arbitrary object.

= public Object clone() throws CloneNotSupportedException;
Returns a deep clone of this instance.

22.8.5 Notes

The ChartPanel class automatically collects entity information using this class, because it needs it
to generate tool tips.

22.9 ChartTheme

22.9.1 Overview

A “chart theme” is some collection of attributes that can be applied to a chart to modify its
appearance. This interface defines the method that is used to apply a theme to a chart. The
StandardChartTheme class implements this interface.

A ChartTheme exists independently of any chart instances, and operates by updating the attributes
of the chart when the apply(JFreeChart) method is called. A ChartTheme instance is not assigned
to a particular chart.

A ChartTheme can be set in the ChartFactory class, using the setChartTheme () method. For example:

ChartTheme darkness = StandardChartTheme.createDarknessTheme();

ChartFactory.setChartTheme (darkness) ;
To apply the current theme to any chart instance:

ChartUtilities.applyCurrentTheme (chart) ;

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 145

Growth Charts: United States Growth Charts: United States
Weight-for-age percentiles: boys, birth to 36 months Weight-for-age percentiles: boys, birth to 36 months

Weight (kg)

°
<
=
°2
°
=

~

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 4
Age in Months Age in Months

P83 —P5 — P10 P25 —P50 P75 P907P957P97‘ —P3 — P5 — P10 — P25 — P50 — P75 — P90 — P95 — P97

Figure 22.1: One chart, two themes

22.9.2 Interface Methods

Call the following method to apply the theme’s attributes to a chart:
= public void apply(JFreeChart chart); [1.0.11]
Applies the characteristics of this theme to the specified chart. If chart is null, this method
should throw an IllegalArgumentException.

Notes

Some points to note:

e the StandardChartTheme class implements this interface;

e this interface was introduced in JFreeChart version 1.0.11.

See Also
StandardChartTheme.

22.10 ChartTransferable

22.10.1 Overview

A class representing a chart for transfer to the clipboard. You won’t normally use this class directly,
but rather configure the ChartPanel class to allow copying to the system clipboard (or call the
ChartPanel’s doCopy () method from your own code). This class was first introduced in JFreeChart
version 1.0.183.

22.10.2 Constructors

This class defines two constructors:

= public ChartTransferable(JFreeChart chart, int width, int height); [1.0.13]
Creates a new instance representing the specified chart at the given width and height.

w public ChartTransferable(JFreeChart chart, int width, int height,
boolean cloneData); [1.0.13]
Creates a new instance representing the specified chart at the given width and height.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 146

22.10.3 Methods
This class defines the following methods:

= public DataFlavor[] getTransferDataFlavors(); [1.0.13]
Returns the supported data flavors.

= public boolean isDataFlavorSupported(DataFlavor flavor); [1.0.13]
Returns true if the specified flavor is supported, and false otherwise.

= public Object getTransferData(DataFlavor flavor) throws UnsupportedFlavorException,
I0Exception; [1.0.13]
Returns the transfer data for the specified data flavor.

22.10.4 Notes

An instance of this class is used to represent a chart on the clipboard in the ChartPanel’s doCopy ()
method.

22.11 ChartUtilities

22.11.1 Overview

This class contains utility methods for:
e creating images from charts—supported formats are PNG and JPEG;
e applying the current ChartTheme to a chart;

e generating HTML image maps.

All of the methods in this class are static.

22.11.2 Generating PNG Images

The Portable Network Graphics (PNG) format is a good choice for creating chart images. The
format offers:

e a free and open specification;
e fast and effective compression;
e 10 loss of quality when images are reconstructed from the compressed binary format;
e excellent support in most web clients;
JFreeChart provides support for writing charts in PNG format via either:

e an encoder developed by J. David Eisenberg (published as free software under the terms of
the GNU LGPL). You can find this encoder at:

http://www.catcode.com
e Java’s ImagelO library;

The former option is used on JDK 1.3.1, while the latter option is used with JDK 1.4.2 or later.
The most general method allows you to write the image data directly to an output stream:

= public static void writeChartAsPNG(OutputStream out, JFreeChart chart,
int width, int height) throws IOException
Writes a chart image of the specified size directly to the output stream in PNG format.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 147

If you need to retain information about the chart dimensions and content (to create an HTML
image map, for example) you can pass in a newly created ChartRenderingInfo object using this
method:

= public static void writeChartAsPNG(OutputStream out, JFreeChart chart,

int width, int height, ChartRenderingInfo info)

Writes a chart image of the specified size directly to the output stream, and collects chart
information in the supplied info object. If info is null, no chart info is collected.

The above methods have counterparts that write image data directly to a file:

= public static void saveChartAsPNG(File file, JFreeChart chart, int width, int height);
Saves a chart image of the specified size into the specified file, using the PNG format.

= public static void saveChartAsPNG(File file, JFreeChart chart, int width, int height,
ChartRenderingInfo info);

Saves a chart to a PNG format image file. If an info object is supplied, it will be populated
with information about the structure of the chart.

22.11.3 Generating JPEG Images

The Joint Photographic Experts Group (JPEG) image format is supported using methods that are
almost identical to those listed for PNG in the previous section.

NOTE: JPEG is not an ideal format for charts. Images lose some definition after
decompression from this format. This is most noticeable in high color contrast areas,

which are common in charts. It is recommended that you use PNG format instead of
JPEG, if at all possible.

Since JFreeChart must rely on Java’s ImagelO API to write images in JPEG format, these methods
can only be used on Java 1.4.2 or later.

To write a chart to a file in JPEG format:?

= public static void saveChartAsJPEG(File file, JFreeChart chart, int width, int height);
Equivalent to saveChartAsJPEG(file, chart, width, height, null)—see the next method.

As with the PNG methods, if you need to know more information about the structure of the chart
within the generated image, you will need to pass in a ChartRenderingInfo object:

= public static void saveChartAsJPEG(File file, JFreeChart chart, int width, int height,
ChartRenderingInfo info);

Saves a chart to a JPEG format image file with the specified dimensions. If info is not null,
it will be populated with information about the structure of the chart. If file or chart is null,
this method throws an IllegalArgumentException.

Alternative methods allow you to specify the quality setting for the JPEG encoding;:

= public static void saveChartAsJPEG(File file, float quality, JFreeChart chart, int width,
int height) throws IOException;
Equivalent to saveChartAsJPEG(file, quality, chart, width, height, null)—see the next method.

= public static void saveChartAsJPEG(File file, float quality, JFreeChart chart, int width,
int height, ChartRenderingInfo info) throws IOException;

Saves a chart to a JPEG format image file with the specified dimensions. The quality setting
should be in the range 0.0 (low quality) to 1.0 (high quality). If file or chart is null, this
method throws an IllegalArgumentException.

2 JFreeChart version 1.0.9 contains a bug (id 1868521) that affects the creation of JPEG images—if you are using
this version, you should upgrade to a later release.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 148

22.11.4 Applying the Current Chart Theme

To apply the current chart theme to a JFreeChart instance, use the following method:

= public static void applyCurrentTheme(JFreeChart chart); [1.0.11]
Applies the current theme to the specified chart. The current theme is defined in the ChartFactory
class.

22.11.5 HTML Image Maps

An HTML image map is an HTML fragment used to describe the characteristics of an image file.
The image map can define regions within the image, and associate these with URLs and tooltip
information.

NOTE: Most methods supporting HTML itmage map creation have been relocated in the
ImageMapUtilities class.

To generate a simple HTML image map for a JFreeChart instance, first generate an image for the
chart and be sure to retain the ChartRenderingInfo object from the image drawing. Then, generate
the image map using the following method:

= public static void writeImageMap(PrintWriter writer, String name,

ChartRenderingInfo info, boolean useOverLibForToolTips) ;

Writes a <MAP> element containing the region definitions for a chart that has been converted to
an image. The info object should be the structure returned from the method call that wrote
the chart to an image file.

There are two demonstration applications in the JFreeChart download that illustrate how this
works: ImageMapDemol and ImageMapDemo?2.

22.11.6 Notes

Some points to note:

e when writing charts to image files, PNG tends to be a better format for charts than JPEG
since the compression is “lossless” for PNG.

See Also

JFreeChart.

22.12 ClipPath

22.12.1 Overview

This class is used by the ContourPlot class. This class is deprecated as of version 1.0.4.

22.13 DrawableLegendItem

22.13.1 Overview

Used to represent a LegendItem plus its physical drawing characteristics (position, label location
etc.) as it is being laid out on the chart.

This class is deprecated (as of version 1.0.2) as it is no longer used by JFreeChart.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 149

22.14 Effect3D

22.14.1 Overview

An interface that should be implemented by renderers that use a “3D effect”. This allows the 3D
axis classes to synchronise their own “3D effect” with that of the renderer and plot.

22.14.2 Methods

This interface defines two methods:

= public double getXOffset();
Returns the x-offset (in Java2D units) for the 3D effect.

= public double getYOffset();
Returns the y-offset (in Java2D units) for the 3D effect.

See Also
BarRenderer3D, CategoryAxis3D, NumberAxis3D.

22.15 HashUtilities

22.15.1 Overview

A utility class to assist with the generation of hash codes. This class was first introduced in
JFreeChart 1.0.3.

22.15.2 Methods

The following methods compute hash codes for the specified input:

= public static int hashCodeForPaint(Paint p); [1.0.3]
Returns a hash code for the specified Paint object.

= public static int hashCodeForDoubleArray(double[] a); [1.0.3]
Returns a hash code for the specified array.

= public static int hashCode(int pre, boolean b); [1.0.7]
Calculates a hash code for the specified boolean primitive, combines it with the incoming hash
(pre), and returns the result.

= public static int hashCode(int pre, double d); [1.0.7]
Calculates a hash code for the specified double primitive, combines it with the incoming hash
(pre), and returns the result.

= public static int hashCode(int pre, Paint p); [1.0.7]
Calculates a hash code for the specified Paint, combines it with the incoming hash (pre), and
returns the result.

= public static int hashCode(int pre, Stroke s); [1.0.7]
Calculates a hash code for the specified Stroke, combines it with the incoming hash (pre), and
returns the result.

= public static int hashCode(int pre, String s); [1.0.7]
Calculates a hash code for the specified String, combines it with the incoming hash (pre), and
returns the result.

= public static int hashCode(int pre, Comparable c); [1.0.7]
Calculates a hash code for the specified Comparable, combines it with the incoming hash (pre),
and returns the result.

= public static int hashCode(int pre, int i); [1.0.8]
Calculates a hash code for the specified int primitive, combines it with the incoming hash (pre),
and returns the result.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 150

= public static int hashCode(int pre, Object obj); [1.0.8]
Calculates a hash code for the specified Object, combines it with the incoming hash (pre), and
returns the result.

= public static int hashCode(int pre, BooleanList list); [1.0.9]
Calculates a hash code for the specified BooleanList, combines it with the incoming hash (pre),
and returns the result.

= public static int hashCode(int pre, PaintList list); [1.0.9]
Calculates a hash code for the specified PaintList, combines it with the incoming hash (pre),
and returns the result.

= public static int hashCode(int pre, StrokeList list); [1.0.9]
Calculates a hash code for the specified StrokeList, combines it with the incoming hash (pre),
and returns the result.

22.16 JFreeChart

22.16.1 Overview

The JFreeChart class coordinates the entire process of drawing charts. One method:
public void draw(Graphics2D g2, Rectangle2D area);

...instructs the JFreeChart object to draw a chart onto a specific area on some graphics device.

Java supports several graphics devices—including the screen, the printer, and buffered images—via
different implementations of the abstract class java.awt.Graphics2D. Thanks to this abstraction,
JFreeChart can generate charts on any of these target devices, as well as others implemented by
third parties (for example, the SVG Generator implemented by the Batik Project).

In broad terms, the JFreeChart class sets up a context for drawing a Plot. The plot obtains data
from a Dataset, and may delegate the drawing of individual data items to a CategoryItemRenderer
or an XYItemRenderer, depending on the plot type (not all plot types use renderers).

The JFreeChart class can work with many different Plot subclasses. Depending on the type of
plot, a specific dataset will be required. Table 22.1 summarises the combinations that are currently
available:

Dataset: Compatible Plot Types:

BoxAndWhiskerCategoryDataset | CategoryPlot with a BoxAndWhiskerRenderer.

BoxAndWhiskerXYDataset XYPlot with a XYBoxAndWhiskerRenderer.

CategoryDataset CategoryPlot subclasses with various renderers,
MultiplePiePlot or a SpiderWebPlot.

ContourDataset ContourPlot (deprecated).

GanttCategoryDataset CategoryPlot with a GanttRenderer.

IntervalCategoryDataset CategoryPlot with an IntervalBarRenderer.

IntervalXYDataset XYPlot with an XYBarRenderer.

OHLCDataset XYPlot with a HighLowRenderer or a
CandlestickRenderer.

PieDataset PiePlot or PiePlot3D.

StatisticalCategoryDataset CategoryPlot with a StatisticalBarRenderer or
StatisticalLineAndShapeRenderer.

ValueDataset CompassPlot, DialPlot, MeterPlot and
ThermometerPlot.

WaferMapDataset WaferMapPlot.

WindDataset XYPlot with a WindItemRenderer.

XYDataset XYPlot with various renderers.

XYZDataset XYPlot with an XYBubbleRenderer.

Table 22.1: Compatible plot and dataset types

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 151

22.16.2 Constructors

All constructors require you to supply a Plot instance (the Plot maintains a reference to the dataset
used for the chart).

The simplest constructor is:

w public JFreeChart(Plot plot);
Creates a new JFreeChart instance. The chart will have no title, and no legend.

For greater control, a more complete constructor is available:

= public JFreeChart(Plot plot, String title, Font titleFont, boolean createlLegend);
Creates a new JFreeChart instance. This constructor allows you to specify a single title (you
can add additional titles, later, if necessary).

The ChartFactory class provides some utility methods that can make the process of constructing
charts simpler.

22.16.3 Attributes
The attributes maintained by the JFreeChart class are listed in Table 22.2.

Attribute: Description:

borderVisible A flag that controls whether or not a border is drawn
around the outside of the chart.

borderStroke The Stroke used to draw the chart’s border.

borderPaint The Paint used to paint the chart’s border.

title The chart title (an instance of TextTitle).

subTitles A list of subtitles.

legend The chart legend.

plot The plot.

antialias A flag that indicates whether or not the chart should
be drawn with anti-aliasing.

backgroundPaint The background paint for the chart.

backgroundImage An optional background image for the chart.

backgroundImageAlignment | The alignment of the background image (if there is
one).

backgroundImageAlpha The alpha transparency for the background image.

notify A flag that controls whether or not change events are
passed on to the chart’s registered listeners;

renderingHints The Java2D rendering hints that will be applied when
the chart is drawn.

Table 22.2: Attributes for the JFreeChart class

22.16.4 Anti-Aliasing

When drawing to pixel-based displays, the use of a technique called anti-aliasing can improve the
appearance of the output by “smoothing” the edges of lines and shapes. Using anti-aliasing for
drawing operations is usually slower, but the results often look better. You can control whether or
not JFreeChart uses anti-aliasing with the following methods:

= public boolean getAntiAlias();
Returns true if this chart is drawn with anti-aliased graphics, and false otherwise.

= public void setAntiAlias(boolean flag);
Sets a flag controlling whether or not anti-aliasing is used when drawing the chart, and sends
a ChartChangeEvent to all registered listeners.

While people generally agree that anti-aliased shapes and lines look better, opinion is divided when
it comes to text. Fortunately, the anti-aliasing setting can be controlled independently for text
items, using the following methods:

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 152

= public Object getTextAntiAlias(); [1.0.5]

Returns the current hint for text anti-aliasing—see the java.awt.RenderingHints class for valid
values. The default value is null, which generally means that the text follows the general
anti-aliasing hint (see getAntiAlias()).

= public void setTextAntiAlias(boolean flag); [1.0.5]
A convenience method that switches text anti-aliasing on or off—see the following method.

= public void setTextAntiAlias(Object val); [1.0.5]
Sets the text anti-aliasing hint value to val and sends a ChartChangeEvent to all registered
listeners. Valid arguments include:

e null — clears the setting, in which case the text will generally follow the hint that applies
to general graphics (see getAntiAlias());

® RenderingHints.VALUE_TEXT_ANTIALIAS_ON — text anti-aliasing on;

® RenderingHints.VALUE TEXT_ANTIALIAS OFF — text anti-aliasing off;

® RenderingHints.VALUE_TEXT_ANTIALIAS_GASP — introduced in Java 1.6.0, this setting turns
anti-aliasing off for certain font sizes where hinting is optimal, and on for other sizes.

22.16.5 Methods

The most important method for a chart is the draw() method:

= public void draw(Graphics2D g2, Rectangle2D chartArea);
Draws the chart on the Graphics2D device, within the specified area.

The chart does not retain any information about the location or dimensions of the items it draws.
Callers that require such information should use the alternative method:

= public void draw(Graphics2D g2, Rectangle2D chartArea, ChartRenderingInfo info);

Draws the chart on the Graphics2D device, within the specified area. If info is not null, it will
be populated with information about the items drawn within the chart (to be returned to the
caller).

To set the title for a chart:

= public void setTitle(String title);
Sets the title for a chart and sends a ChartChangeEvent to all registered listeners.

An alternative method for setting the chart title is:

= public void setTitle(TextTitle title);
Sets the title for a chart and sends a ChartChangeEvent to all registered listeners.

Although a chart can have only one title, it can have any number of subtitles:

= public void addSubtitle(Title title);
Adds a title to the chart.

The legend shows the names of the series (or sometimes categories) in a chart, next to a small color
indicator. To add a legend to the chart:

= public void addLegend(LegendTitle legend);

Adds a legend to the chart and triggers a ChartChangeEvent. An IllegalArgumentException is
thrown if legend is null. Note that legends are implemented as chart titles, so they can be
positioned in the same way as any subtitle (at the top, bottom, left or right of the chart).

= public void removeLegend();
Removes the first legend from the chart and triggers a ChartChangeEvent.

To set the background paint for the chart:

= public void setBackgroundPaint(Paint paint);
Sets the background paint for the chart and sends a ChartChangeEvent to all registered listeners.
If this is set to null, the chart background will be transparent.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 153

22.16.6 Background Image

A chart can have a background image (optional)—for an example, see TimeSeriesDemo4.java in the
JFreeChart demo collection.

= public Image getBackgroundImage();
Returns the background image for the chart (possibly null).

= public void setBackgroundImage(Image image);

Sets the background image for the chart (null permitted) and sends a ChartChangeEvent to all
registered listeners. You must ensure that the image is fully loaded before passing it to this
method—see section 20.4 for more information.

To control the alignment of the background image:

= public int getBackgroundImageAlignment() ;
Returns a code that specifies the alignment of the background image.

= public void setBackgroundImageAlignment(int alignment);
Sets the alignment for the background image and sends a ChartChangeEvent to all registered
listeners. Standard alignment codes are defined by the Align class.

To control the alpha transparency of the background image:

= public float getBackgroundImageAlpha();
Returns the alpha transparency for the background image.

= public void setBackgroundImageAlpha(float alpha);

Sets the alpha transparency for the background image then sends a ChartChangeEvent to all
registered listeners. The alpha should be a value between 0.0 (fully transparent) and 1.0
(opaque).

An alternative option is to set a background image for the chart’s Plot—this image will be positioned
within the plot area only rather than the entire chart area.

22.16.7 The Chart Border

A border can be drawn around the outside of a chart, if required. By default, no border is drawn,
since in many cases a border can be added externally (for example, in an HTML page). If you do
require a border, use the following methods:

= public boolean isBorderVisible();
Returns the flag that controls whether or not a border is drawn around the outside of the chart.
The default value is false.

= public void setBorderVisible(boolean visible);
Sets the flag that controls whether or not a border is drawn around the outside of the chart,
and sends a ChartChangeEvent to all registered listeners.

To control the appearance of the border:

= public Stroke getBorderStroke();
Returns the Stroke used to draw the chart border, if there is one.

= public void setBorderStroke(Stroke stroke);
Sets the Stroke used to draw the chart border, if there is one, and sends a ChartChangeEvent to
all registered listeners.

= public Paint getBorderPaint();
Returns the Paint used to draw the chart border, if there is one.

= public void setBorderPaint(Paint paint);
Sets the Paint used to paint the chart border, if there is one, and sends a ChartChangeEvent to
all registered listeners.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 154

22.16.8 Chart Change Listeners

If an object wants to “listen” for changes that are made to a chart, it needs to implement the
ChartChangeListener interface so that it can register with the chart instance to receive ChartChangeEvent
notifications.

For example, a ChartPanel instance automatically registers itself with the chart that it displays—any
change to the chart results in the panel being repainted.

To receive notification of any change to a chart, a listener object should register via this method:

= public void addChangeListener (ChartChangelListener listener);
Register to receive chart change events.

To stop receiving change notifications, a listener object should deregister via this method:

= public void removeChangeListener (ChartChangelistener listener);
Deregister to stop receiving chart change events.

There are situations where you might want to temporarily disable the event notification mechanism—
use the following methods:

= public boolean isNotify();
Returns the flag that controls whether or not change events are sent to registered listeners.

= public void setNotify(boolean notify);
Sets the flag that controls whether or not change events are sent to registered listeners. You
can use this method to temporarily turn off the notification mechanism.

For example, when a chart is displayed in a ChartPanel, every update to the chart’s data will trigger
a repaint of the chart. If you need to add several items to the chart’s dataset, typically you’ll only
want the chart to be repainted once, after the last data item is added. You can achieve that as
follows:

chart.setNotify(false);

// do several dataset updates here...
chart.setNotify(true);

22.16.9 Creating Images
The JFreeChart class includes utility methods for creating a BufferedImage containing the chart:

= public BufferedImage createBufferedImage(int width, int height);
Creates a buffered image containing the chart. The size of the image is specified by the width
and height arguments.

= public BufferedImage createBufferedImage(int width, int height,

ChartRenderingInfo info);

Creates a buffered image containing the chart. The size of the image is specified by the width
and height arguments. The info argument is used to collect information about the chart as it
is being drawn (required if you want to create an HTML image map for the image).

One other variation draws the chart at one size then scales it (up or down) to fit a different image
size:

= public BufferedImage createBufferedImage(int imageWidth, int imageHeight,

double drawWidth, double drawHeight, ChartRenderingInfo info)

Creates an image containing a chart that has been drawn at one size then scaled (up or down)
to fit the image size.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 155

22.16.10 Equals, Cloning and Serialization
Equality
The JFreeChart class overrides the equals() method:

= public boolean equals(Object obj);

Tests this chart for equality with an arbitrary object. This method generally returns true if
obj is an instance of JFreeChart and has the same attributes (ignoring the dataset or datasets)
as this chart instance.

There are several factors that make it difficult to implement a robust test for equality, including:

e in many places, JFreeChart expresses elements of its API using standard interfaces such as
java.awt.Shape, java.awt.Stroke and java.awt.Paint. Classes that implement these interfaces
are not required to override equals()—we try to cater for known instances where equals()
is not overridden (for example, Line2D), but there is nothing we can do for custom or third
party implementations of these interfaces;

e some JFreeChart classes rely on the use of java.awt.Image, which does not override the
equals() method. For these cases, we generally treat image equality as being reference equal-
ity. Classes where this is an issue include ImageTitle and XYImageAnnotation.

Cloning

Instances of the JFreeChart class are Cloneable. When you create a clone of a chart, the clone
uses the same dataset reference(s) as the original chart (that is, the datasets themselves are NOT
cloned—you can do this separately, if necessary). In all other respects, the cloned chart should be
independent of the original chart instance.?

One difficulty in implementing cloning is that many elements in the charts are specified in the
APIT using interfaces only. For a class that implements one of the interfaces defined in JFreeChart,
we use the PublicCloneable interface to signal that the implementing class supports cloning (and
to provide access to the clone() method without needing to know the implementing class). If a
JFreeChart class doesn’t implement PublicCloneable, it may be assumed to be immutable so its
reference can be copied when making a clone.?

Serialization

Instances of the JFreeChart class are Serializable. Generally serialization works well, but there
are some things to watch out for:

e since JFreeChart uses instances of Shape, Stroke and Paint all over, and many classes that
implement these interfaces do not support serialization, we’ve had to provide workarounds via
the SerialUtilities class in the JCommon class library;

e we haven’t implemented serialization for classes that use java.awt.Image, so if you need to
rely on serialization you should avoid setting background images in charts, and you should
avoid using classes such as ImageTitle and XYImageAnnotation;

22.16.11 Notes

Some points to note:

e for convenience, the ChartFactory class provides a large number of methods for creating
“ready-made” charts;

3We've dedicated a fair number of JUnit tests to checking this, but we welcome bug reports and new tests to
make this even more robust.
4More test coverage is required to verify that this is working correctly.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 156

e a chart theming mechanism was introduced in JFreeChart version 1.0.11—see the ChartTheme
interface;

o the Java2D API is used throughout JFreeChart, so JFreeChart does not work JRE/JDK 1.1
(Java2D was introduced in JRE/JDK 1.2).

See Also
ChartUtilities, ChartPanel, ChartTheme.

22.17 Legendltem

22.17.1 Overview

A class that records the attributes of an item that should appear in a legend (see the LegendTitle
class). Instances of this class are usually created by a renderer (in the getLegendItem() method),
which should set the attributes to match the visual representation of the corresponding series. Table
22.3 lists the attributes defined by the class.

Attribute: Description:

label The label (usually the series name).

labelFont The label font (since version 1.0.11).

labelPaint The label paint (since version 1.0.11).

attributed Label Not currently used.

description A description of the item (not currently used).

dataset A reference to the dataset (since version 1.0.6).
datasetIndex The dataset index (in the plot, since version 1.0.6).
seriesKey The series key (since version 1.0.6).

seriesIndex The series index (since version 1.0.2).

shape Visible A flag that indicates whether or not the shape is visible.
shape The shape displayed for the legend item.

shapeFilled A flag that controls whether or not the shape is filled.
fillPaint The fill paint.

fillPaintTransformer | The gradient transformer for the fill paint (since version 1.0.4).
shapeOutline Visible A flag that indicates whether or not the shape outline is visible.
outlinePaint The outline paint.

outlineStroke The outline stroke.

line Visible A flag that indicates whether or not the line is visible.
lineStroke The line stroke.

linePaint The line paint.

toolTip Text The tool tip text (if any).

urlText The URL for this legend item (if any).

Table 22.3: Attributes for the LegendItem class

22.17.2 Constructors

To create a legend item:

w public LegendItem(String label); [1.0.10]

Equivalent to LegendItem(label, Color.black)—see the next constructor. Since this constructor
creates a legend item with the colour set to black, it isn’t generally that useful but it is
convenient for some JUnit testing code.

= public LegendItem(String label, Paint paint); [1.0.12]
Creates a legend item with the specified label and fill paint.

A range of other constructors exist

= public LegendItem(String label, String description, String toolTipText,
String urlText, Shape shape, Paint fillPaint);
Creates a new legend item record.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 157

= public LegendItem(String label, String description, String toolTipText,
String urlText, Shape shape, Paint fillPaint, Stroke outlineStroke,

Paint outlinePaint);

Creates a new legend item record.

w public LegendItem(String label, String description, String toolTipText,
String urlText, Shape line, Stroke lineStroke, Paint linePaint);
Creates a new legend item record.

w public LegendItem(String label, String description, String toolTipText,

String urlText, boolean shapeVisible, Shape shape, boolean shapeFilled,

Paint fillPaint, boolean shapeQutlineVisible, Paint outlinePaint, Stroke outlineStroke,
boolean lineVisible, Shape line, Stroke lineStroke, Paint linePaint);

Creates a new legend item record.

Yet more constructors allow for labels to be specified as ”attributed” strings, but this feature is not
used in any publically released version of JFreeChart:

= public LegendItem(AttributedString label, String description, String toolTipText,
String urlText, Shape shape, Paint fillPaint);
Creates a new legend item record.

= public LegendItem(AttributedString label, String description, String toolTipText,
String urlText, Shape shape, Paint fillPaint, Stroke outlineStroke, Paint outlinePaint);
Creates a new legend item record.

= public LegendItem(AttributedString label, String description, String toolTipText,
String urlText, Shape line, Stroke lineStroke, Paint linePaint);
Creates a new legend item record.

= public LegendItem(AttributedString label, String description, String toolTipText,
String urlText, boolean shapeVisible, Shape shape, boolean shapeFilled,

Paint fillPaint, boolean shapeOutlineVisible, Paint outlinePaint, Stroke outlineStroke,
boolean lineVisible, Shape line, Stroke lineStroke, Paint linePaint);

Creates a new legend item record.

22.17.3 Methods
The following methods are defined:

= public Dataset getDataset(); [1.0.6]
Returns the dataset.

= public void setDataset(Dataset dataset); [1.0.6]
Sets the dataset.

= public int getDatasetIndex(); [1.0.2]
Returns the dataset index for this legend item.

= public void setDatasetIndex(int index); [1.0.2]
Sets the dataset index for this legend item.

= public Comparable getSeriesKey(); [1.0.6]
Returns the key for the series that this legend item represents.

= public void setSeriesKey(Comparable key); [1.0.6]
Sets the key for the series that this legend item represents.

= public int getSeriesIndex(); [1.0.2]
Returns the series index for this legend item.

= public void setSeriesIndex(int index); [1.0.2]
Sets the series index for the legend item.

= public String getLabel();
Returns the legend item label.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 158

= public AttributedString getAttributedLabel();
Returns an attributed legend item label, or null.

= public Font getLabelFont(); [1.0.11]
Returns the label font.

= public void setLabelFont(Font font); [1.0.11]
Sets the label font.

= public Paint getLabelPaint(); [1.0.11]
Returns the label paint.

= public void setLabelPaint(Paint paint); [1.0.11]
Sets the label paint.

= public String getDescription();
Returns the description for the legend item (not used).

= public String getToolTipText();
Returns the tool tip text for the legend item.

= public String getURLText();
Returns the URL for the legend item (only used in HTML image maps).

= public boolean isShapeVisible();
Returns a flag that controls whether or not the legend item shape should be displayed.

= public Shape getShape();
Returns the shape to display as the graphic for this legend item.

= public boolean isShapeFilled();
Returns a flag that controls whether or not the legend item shape should be filled.

= public Paint getFillPaint();
Returns the fill paint for the series represented by this legend item.

= public void setFillPaint(Paint paint); [1.0.11]
Sets the fill paint.

= public boolean isShapeOutlineVisible();
Returns a flag that controls whether or not the legend item shape should have its outline drawn.

= public Stroke getLineStroke();
Returns the stroke used to draw the line for the legend item graphic.

= public Paint getLinePaint();
Returns the line paint.

= public void setLinePaint(Paint paint); [1.0.11]
Sets the line paint.

= public Paint getOutlinePaint();
Returns the outline paint for the series represented by this legend item.

= public Stroke getOutlineStroke();
Returns the outline stroke for the series represented by this legend item.

= public boolean isLineVisible();
Returns a flag that controls whether or not a line is drawn as part of the legend item graphic.

= public Shape getLine();
Returns the line, if any, to be drawn for the legend item graphic. This method can return null.

= public GradientPaintTransformer getFillPaintTransformer(); [1.0.4]
Returns the gradient paint transformer, if any, used by the renderer for the series represented by
this legend item. The default value is a default instance of StandardGradientPaintTransformer.

= public void setFillPaintTransformer (GradientPaintTransformer transformer); [1.0.4]
Sets the gradient paint transformer used by the renderer for the series represented by this
legend item. If transformer is null, this method throws an IllegalArgumentException.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 159

22.17.4 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this legend item for equality with an arbitrary object (which may be null).

Instances of this class are Cloneable (since version 1.0.10) and Serializable.

22.17.5 Notes
Some points to note:

e the LegendItemSource interface defines a method that should return a collection of legend
items;

e originally this was an immutable class (but not any longer), which is why there are so many
constructors with varying arguments, and some attributes with no setter methods;

e this class implements the Serializable interface.

See Also

LegendItemCollection, LegendTitle.

22.18 LegendItemCollection

22.18.1 Overview

A collection of legend items, typically returned by the getLegendItems() method in the plot classes.
You can create your own collection of legend items and pass it to a CategoryPlot or XYPlot via the
setFixedLegendItems () method, as a way of overriding the automatically generated legend items.

22.18.2 Constructors

There is a single constructor:

= public LegendItemCollection();
Creates a new empty collection.

22.18.3 Methods

To add an item to the collection:

= public void add(LegendItem item);
Adds the specified item to the collection.

To add a collection of items to this collection:

= public void addAll(LegendItemCollection collection);
Adds all the items from the given collection to this collection (by copying references, the items
themselves are not duplicated/cloned).

To find out how many items there are in the collection:

= public int getItemCount();
Returns the number of items in the collection.

To retrieve an item from the collection:

= public LegendItem get(int index);
Returns the item with the specified index.

To get an iterator that provides access to the items in the collection:

= public Iterator iterator();
Returns an iterator that provides access to the items in the collection.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 160

22.18.4 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this collection for equality with an arbitrary object. This method returns true if and
only if:

® obj is not null;
e obj is an instance of LegendItemCollection;

e both collections contain the same items in the same order.

Instances of this class are Cloneable and Serializable.

See Also
LegendItem.

22.19 LegendItemSource

22.19.1 Overview

An interface for obtaining a collection of legend items. This interface is implemented (or extended)
by:

e Plot (to work for all plot types) — the plot will typically return a legend item for every series
that it displays;

e CategoryIltemRenderer — the renderer will return a legend item for every series it renders, unless
otherwise specified;

e XYItemRenderer — as for the CategoryItemRenderer.

A LegendTitle will use one or more of these sources to obtain legend items for display on the chart.
This provides an opportunity for the legend to display just a subset of the items from a chart, if
required (for example, if a plot has multiple renderers, the legend can be configured to use just one
of the renderers as its LegendItemSource).

22.19.2 Methods

To obtain a collection of legend items:

= public LegendItemCollection getLegendItems();
Returns a collection of legend items (possibly empty, but never null).

See Also

LegendItem, LegendItemCollection.

22.20 LegendRenderingOrder
22.20.1 Overview

A class that defines tokens that control the order of the items in the legend. See table 22.4 for the
tokens that are defined.

22.20.2 Notes

This class is a left-over from older versions of JFreeChart, and is not currently used. It should
probably be deprecated.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 161

1D: | Description:

LegendRenderingOrder.STANDARD | Items are rendered in order.
LegendRenderingOrder .REVERSE Items are rendered in reverse order.

Table 224 Tokens deﬁned by LegendRenderingOrder

22.21 MouseWheelHandler

22.21.1 Overview

This class handles mouse wheel zooming for the ChartPanel class. This class is used internally
by JFreeChart, you won’t normally use it directly. To enable mouse-wheel zooming, call the
setMouseWheelEnabled () method in the ChartPanel class.

This class was first introduced in JFreeChart 1.0.13.

22.21.2 Constructor

= public MouseWheelHandler (ChartPanel chartPanel); [1.0.13]
Creates a new mouse wheel handler for the specified panel.

22.21.3 Methods
This class defines the following methods:

= public double getZoomFactor(); [1.0.13]
Returns the zoom factor, which controls the amount by which the plot zooms in or out for a
given mouse wheel change. The default value is 0.10 (ten percent).

= public void setZoomFactor(double zoomFactor); [1.0.13]
Sets the zoom factor.

= public void mouseWheelMoved(MouseWheelEvent e); [1.0.13]
Receives notification of a mouse wheel event, and responds by zooming the chart in the chart
panel that was specified in the constructor.

22.21.4 Notes

Some points to note:

e to enable mouse-wheel zooming, use the setMouseWheelEnabled() method in the ChartPanel
class;

e this class requires Java 1.4.2 or later to compile. If you build JFreeChart using Java 1.3.1,
the Ant build script will omit this class. Furthermore, JEreeChart will reference this class by
reflection only, so that if you are running on JRE 1.3.1, no error will occur (but, of course,
mouse wheel support will not be enabled).

See Also
ChartPanel.

22.22 PolarChartPanel

22.22.1 Overview

An extension of the ChartPanel class with a pop-up menu that applies to polar charts.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 162

22.23 StandardChartTheme

22.23.1 Overview

An implementation of the ChartTheme interface. This class defines a collection of around 30 at-
tributes (fonts, colours, line styles etc) that can be applied to any JFreeChart instance to modify its
appearance. Two predefined themes (the JFree theme and the Darkness theme) can be created
via static utility methods, along with a third Legacy theme which does not apply any changes to
a chart (thus preserving the original JFreeChart defaults).

A theme attribute has been added to the ChartFactory class, and all charts created via methods in
that class will have the current theme applied. There is also a applyCurrentTheme () method in the
ChartUtilities class.

This class was first introduced in JFreeChart version 1.0.11.

22.23.2 Predefined Themes

Three predefined themes are available:

= public static ChartTheme createJFreeTheme();
The default theme, known as the “JFree” theme. This theme uses a white background for the
charts, with a light grey in the background area of the plot.

= public static ChartTheme createDarknessTheme();
A theme which features dark backgrounds and white text.

= public static ChartTheme createlLegacyTheme();

A theme that makes no alterations to the chart attributes. If you make this the default theme,
then charts will be created with the defaults coded into each of the components (plots, renderers,
axes etc.) that make up the chart. This results in the original JFreeChart look.

22.23.3 Constructor

To create a new instance:

= public StandardChartTheme(String name); [1.0.11]
Creates a new theme with the specified name. The default theme attributes are those for the
“JFree” theme.

22.23.4 General Attributes
To get the name of the theme:

= public String getName(); [1.0.11]
Returns the name of the theme, as specified via the constructor. This name is for identification
purposes only.

22.23.5 Fonts

This theme defines fonts in the sizes small, regular, large and extra large. These fonts are applied
to the various text items within a chart.

= public Font getSmallFont(); [1.0.13]
Returns the small font. The default value is Font ("Tahoma", Font.PLAIN, 10).

= public void setSmallFont(Font font); [1.0.13]
Sets the small font for this theme. If font is null, this method throws an I1legalArgumentException.

= public Font getRegularFont(); [1.0.11]
Returns the regular font. The default value is Font ("Tahoma", Font.PLAIN, 12).

= public void setRegularFont(Font font); [1.0.11]
Sets the regular font for this theme. If font is null, this method throws an I1legalArgumentException.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 163

= public Font getLargeFont(); [1.0.11]
Returns the large font. The default value is Font("Tahoma", Font.PLAIN, 14).

= public void setLargeFont(Font font); [1.0.11]
Sets the large font for this theme. If font is null, this method throws an I1legalArgumentException.

= public Font getExtralargeFont(); [1.0.11]
Returns the extra large font for this theme. The default value is Font("Tahoma", Font.PLAIN,
20).

= public void setExtralargeFont(Font font); [1.0.11]
Sets the extra large font for this theme. If font is null, this method throws an I1legalArgumentException.

The colours used for text items are controlled by various attributes defined elsewhere, including:
e titlePaint
® subtitlePaint
® legendItemPaint
® axisLabelPaint

e tickLabelPaint

22.23.6 Title Attributes
Attributes relating to titles and subtitles include:

w public Paint getTitlePaint(); [1.0.11]
Returns the colour used for the main chart title (never null). The default value is Color.black.

= public void setTitlePaint(Paint paint); [1.0.11]
Sets the colour used for the main chart title. If paint is null, this method throws an Il1legalArgument-
Exception.

= public Paint getSubtitlePaint(); [1.0.11]
Returns the colour used for the text in subtitles (never nu1l). The default value is Color.black.

= public void setSubtitlePaint(Paint paint); [1.0.11]
Sets the colour used for the text in subtitles. If paint is null, this method throws an I1legalArgument-
Exception.

22.23.7 Outlines and Backgrounds

Attributes relating to the outlines and background for charts and plots:

= public Paint getChartBackgroundPaint(); [1.0.11]
Returns the paint used to fill the chart background (never nu1l). The default value is Color.white.

= public void setChartBackgroundPaint(Paint paint); [1.0.11]
Sets the paint used to fill the chart background. If paint is null, this method throws an
IllegalArgumentException.

= public Paint getPlotBackgroundPaint(); [1.0.11]
Returns the paint used to fill the plot background (never nul1). The default value is Color.lightGray.

= public void setPlotBackgroundPaint(Paint paint); [1.0.11]
Sets the paint used to fill the plot background. If paint is null, this method throws an
IllegalArgumentException.

= public Paint getPlotOutlinePaint(); [1.0.11]
Returns the paint used to draw the plot outline (never null). The default value is Color.black.

= public void setPlotOutlinePaint(Paint paint); [1.0.11]
Sets the paint used to draw the plot outline. If paint is null, this method throws an IllegalArgument-

Exception.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 164

22.23.8 Drawing Attributes

The series colours and line styles in charts are controlled by a “drawing supplier” in JFreeChart.
A theme can provide a customised drawing supplier to control the default series colours and style:

= public DrawingSupplier getDrawingSupplier(); [1.0.11]
Returns a clone of the drawing supplier for this theme. It is necessary to clone the drawing
supplier because each chart requires a unique instance of the drawing supplier.

= public void setDrawingSupplier (DrawingSupplier supplier); [1.0.11]
Sets the drawing supplier for this theme. Calls to getDrawingSupplier() will return a clone of
this instance.

22.23.9 Legend
Attributes that relate to a chart’s legend(s):

= public Paint getLegendBackgroundPaint(); [1.0.11]
Returns the paint used to fill the background of the chart’s legend(s).

= public void setLegendBackgroundPaint(Paint paint); [1.0.11]
Sets the paint used to fill the background of the chart’s legend(s).

= public Paint getLegendItemPaint(); [1.0.11]
Returns the paint used for the text items in the chart’s legend(s).

= public void setLegendItemPaint(Paint paint); [1.0.11]
Sets the paint used for the text items in the chart’s legend(s).

22.23.10 Pie Charts

The following attributes are specific to pie charts:

= public PieLabelLinkStyle getLabelLinkStyle(); [1.0.11]
Returns the link style used for pie chart labels.

= public void setLabelLinkStyle(PieLabelLinkStyle style); [1.0.11]
Sets the link style used for pie chart labels.

= public Paint getLabelLinkPaint(); [1.0.11]
Returns the paint for the label links in pie charts.

= public void setLabelLinkPaint(Paint paint); [1.0.11]
Sets the paint used for the label links in pie charts.

22.23.11 Gridlines
For charts with gridlines, the following attributes apply:

= public Paint getDomainGridlinePaint(); [1.0.11]
Returns the paint used to draw gridlines against the domain (X) axis.

= public void setDomainGridlinePaint(Paint paint); [1.0.11]
Sets the paint used to draw gridlines against the domain (X) axis.

= public Paint getRangeGridlinePaint(); [1.0.11]
Returns the paint used to draw gridlines against the range (Y) axis.

= public void setRangeGridlinePaint(Paint paint); [1.0.11]
Sets the paint used to draw gridlines against the range (Y) axis.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 165

22.23.12 Axis Attributes

For charts that have axes, the following attributes are applied:

= public Paint getAxisLabelPaint(); [1.0.11]
Returns the paint used to draw the text of axis labels.

= public void setAxisLabelPaint(Paint paint); [1.0.11]
Sets the paint used to draw the text of axis labels.

= public Paint getTickLabelPaint(); [1.0.11]
Returns the paint used to draw the text of the axis tick labels.

= public void setTickLabelPaint(Paint paint); [1.0.11]
Sets the paint used to draw the text of the axis tick labels.

= public RectangleInsets getAxisOffset(); [1.0.11]
Returns the axis offsets.

= public void setAxisOffset(RectangleInsets offset); [1.0.11]
Sets the axis offsets.

The following paint is used to draw the axis baselines:

= public Paint getBaselinePaint(); [1.0.13]
Returns the baseline paint (never null). The default value is Color.black.

= public void setBaselinePaint(Paint paint); [1.0.13]
Sets the baseline paint. If paint is null, this method throws an IllegalArgumentException.

22.23.13 General Renderer Attributes
Attributes that apply to renderers:

= public Paint getItemLabelPaint(); [1.0.11]
Returns the paint (never null) used to draw the text for any item labels. The default value is
Color.black.

= public void setItemLabelPaint(Paint paint); [1.0.11]
Sets the paint used to draw the text for any item labels. If paint is null, this method throws
an IllegalArgumentException.

= public boolean isShadowVisible(); [1.0.11]
Returns the flag that controls whether or not shadows are visible. The default value is true.
At present, only a few renderers support shadows (for example, BarRenderer and XYBarRenderer.

= public void setShadowVisible(boolean visible); [1.0.11]
Sets the flag that controls whether or not shadows are visible.

= public Paint getShadowPaint(); [1.0.11]
Returns the shadow paint (never null). The default value is Color.gray.

= public void setShadowPaint(Paint paint); [1.0.11]
Sets the shadow paint. If paint is null, this method throws an IllegalArgumentException.

= public BarPainter getBarPainter(); [1.0.11]
Returns the bar painter (never null). The default value is a new default instance of GradientBarPainter.

= public void setBarPainter(BarPainter painter); [1.0.11]
Sets the bar painter. If painter is null, this method throws an IllegalArgumentException.

= public XYBarPainter getXYBarPainter(); [1.0.11]
Returns the bar painter used for any XYBarRenderer instances.

= public void setXYBarPainter (XYBarPainter painter); [1.0.11]
Sets the bar painter that will be used for any XYBarRenderer instances.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 166

22.23.14 Other Attributes

There are a range of other attributes that get applied in specific situations:

= public Paint getThermometerPaint(); [1.0.11]
Returns the paint for the thermometer in a ThermometerPlot.

w public void setThermometerPaint(Paint paint); [1.0.11]
Sets the thermometer paint. If paint is null, this method throws an IllegalArgumentException.

= public Paint getWallPaint(); [1.0.11]
Returns the paint used to highlight the walls in a plot with a 3D effect.

= public void setWallPaint(Paint paint); [1.0.11]
Sets the wall paint. If paint is null, this method throws an IllegalArgumentException.

= public Paint getErrorIndicatorPaint(); [1.0.11]
Returns the paint used for the error indicators in the StatisticalBarRenderer and StatisticalLineRenderer
classes.

= public void setErrorIndicatorPaint(Paint paint); [1.0.11]
Sets the error indicator paint. If paint is null, this method throws an Il1legalArgumentException.

= public Paint getGridBandPaint(); [1.0.11]
Returns the grid band paint (never null) for a SymbolAxis. The default value is Color (232, 234,
232, 128).

= public void setGridBandPaint(Paint paint); [1.0.11]
Sets the grid band paint. If paint is null, this method throws an IllegalArgumentException.

= public Paint getGridBandAlternatePaint(); [1.0.11]
Returns the alternate paint for grid bands on a SymbolAxis.

= public void setGridBandAlternatePaint(Paint paint); [1.0.11]
Sets the alternate grid band paint. If paint is null, this method throws an IllegalArgument-
Exception.

For the crosshairs managed by the XYPlot and CategoryPlot classes:

= public Paint getCrosshairPaint();
Returns the crosshair paint (never null). The default value is Color.blue.

= public void setCrosshairPaint(Paint paint);
Sets the crosshair paint for this theme. If paint is null, this method throws an I1legalArgument-
Exception.

22.23.15 Applying the Theme
To apply the theme to a chart, call the following method:

= public void apply(JFreeChart chart); [1.0.11]

Applies the attributes of this theme to the specified chart. The code inside this method is not
particularly elegant, it performs a lot of instanceof checks in order to determine the components
of the chart and apply the necessary attributes. It mostly works though!

22.23.16 Equals, Cloning and Serialization
This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this theme for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 167

22.23.17 Notes

Some points to note:
e the theme engine does not handle the DialPlot class yet;

e this interface was first introduced in JFreeChart version 1.0.11.

See Also

ChartFactory, ChartUtilities.

Chapter 23

Package:
org.jfree.chart.annotations

23.1 Overview

The annotations framework provides a mechanism for adding small text and graphics items to
charts, usually to highlight a particular data item. In the current release, annotations can be added
to the CategoryPlot and XYPlot classes. This framework is relatively basic at present, additional
features are likely to be added in the future.

23.2 AbstractXYAnnotation

23.2.1 Overview

A base class that can be used by classes that need to implement the XYAnnotation interface. Sub-
classes provided by JFreeChart include:

e XYBoxAnnotation — draws a box at specified data coordinates;

e XYDrawableAnnotation — draws an instance of Drawable;

® XYImageAnnotation — draws an image;

® XYLineAnnotation — draws a line between specified data coordinates;

e XYPointerAnnotation — draws some text plus an arrow pointing at a data point;
e XYPolygonAnnotation — draws a polygon;

e XYShapeAnnotation — draws an arbitrary Shape;

e XYTextAnnotation — draws a string.

If you create your own custom annotations, you don’t have to subclass AbstractXYAnnotation, but
it will save you some work.

23.2.2 Constructors

This class defines a single (protected) constructor:

= protected AbstractXYAnnotation();
Initialises the tool tip text and URL to null.

168

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 169

23.2.3 General Attributes

To access the tool tip text for the annotation:

= public String getToolTipText();
Returns the tool tip text for this annotation. The default value is null.

= public void setToolTipText(String text);
Sets the tool tip text for this annotation (null is permitted). No change event is generated.

To access the URL for the annotation:

= public String getURLQ);
Returns the URL that will be used for this annotation in an HTML image map. The default
value is null.

= public void setURL(String url);
Sets the URL that will be used for this annotation in an HTML image map (null is permitted).
No change event is generated.

23.2.4 Other Methods

The draw method is abstract, and must be implemented by subclasses:

= public abstract void draw(Graphics2D g2, XYPlot plot, Rectangle2D dataArea,

ValueAxis domainAxis, ValueAxis rangeAxis, int rendererIndex, PlotRenderingInfo info);

To be implemented by subclasses. This method will be called by JFreeChart when the anno-
tation needs to be drawn—you won’t normally call this method directly from your own code.

A utility method is provided for subclasses to add an entity:

= protected void addEntity(PlotRenderingInfo info, Shape hotspot, int rendererIndex,
String toolTipText, String urlText);

A utility method for adding an entity—this is available for calling by subclasses (typically from
the draw() method).

23.2.5 Equals, Cloning and Serialization

This class overrides the equals(0Object) method:

= public boolean equals(Object obj);
Tests this annotation for equality with an arbitrary object. This method returns true if and
only if:

® obj is not null;

e obj is an instance of AbstractXYAnnotation;

e both annotations have the same tool tip and URL text.

Subclasses of this class should be Cloneable and Serializable, otherwise charts that use these
annotations won’t support cloning and serialization.

23.2.6 Notes

Some points to note:

e there is no event notification mechanism for annotations, so when you update an annotation,
the chart display will not automatically be refreshed. One way to trigger a repaint (at least,
if your chart is displayed in a ChartPanel) is to call chart.setNotify(true).

See Also

XYAnnotation.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 170

23.3 CategoryAnnotation

23.3.1 Overview

The interface that must be supported by annotations that are to be added to a CategoryPlot. The
classes that implement this interface are:

® CategoryLineAnnotation;
® CategoryPointerAnnotation,;

® CategoryTextAnnotation.

You can write your own annotation that implements this interface. Annotations are added to a
plot using the addAnnotation() method (in the CategoryPlot class).

23.3.2 Interface

This interface defines a single method:

w public void draw(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea,
CategoryAxis domainAxis, ValueAxis rangeAxis);
Draws the annotation. This method is typically called by JFreeChart, not user code.

23.3.3 Notes

Some points to note:

e for now, a CategoryAnnotation can only be added directly to a CategoryPlot, and is positioned
relative to the plot’s primary axes. It would make sense to allow annotations to be assigned to
a renderer (as can be done with XYAnnotation) so that the annotation can be plotted against
secondary axes.

See Also

CategoryLineAnnotation, CategoryPointerAnnotation, CategoryTextAnnotation.

23.4 CategoryLineAnnotation

23.4.1 Overview

An annotation that draws a line between two points on a CategoryPlot (each defined by a (category,
value) data item).! This class implements CategoryAnnotation.

23.4.2 Constructor

To create a new instance:

= public CategoryLineAnnotation(Comparable categoryl, double valuel,

Comparable category2, double value2, Paint paint, Stroke stroke);

Creates a new annotation that connects (categoryl, valuel) and (category2, value2) with a
straight line drawn using the specified paint and stroke.

1This class was requested by a client. Personally, I don’t see a compelling use for it—if you know of one, please
let me know!

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 171

23.4.3 General Attributes

To access the location used for the start of the line:

= public Comparable getCategoryl();
Returns the category for the start of the line (never null).

= public void setCategoryl(Comparable category) ;
Sets the category for the start of the line (null is not permitted). You should ensure that this
category actually exists in the dataset.

= public double getValuel();
Returns the value for the start of the line.

= public void setValuel(double value);
Sets the value for the start of the line.

To access the location used for the end of the line:

= public Comparable getCategory2();
Returns the category for the start of the line (never null).

= public void setCategory2(Comparable category);
Sets the category for the end of the line (null is not permitted). You should ensure that this
category actually exists in the dataset.

= public double getValue2();
Returns the value for the end of the line.

= public void setValue2(double value);
Sets the value for the end of the line.

To access the paint used to draw the line:

= public Paint getPaint();
Returns the paint used to draw the line (never null).

= public void setPaint(Paint paint);
Sets the paint used to draw the line (null is not permitted).

To access the stroke used to draw the line:

= public Stroke getStroke();
Returns the stroke used to draw the line (never null).

= public void setStroke(Stroke stroke);
Sets the stroke used to draw the line (null is not permitted).

23.4.4 Other Methods
The annotation is drawn by the following method, which is typically called by JFreeChart rather
than user code:

= public void draw(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea,
CategoryAxis domainAxis, ValueAxis rangeAxis);
Draws the annotation.

23.4.5 Equals, Cloning and Serialization

This class overrides the equals(0Object) method:

= public boolean equals(Object obj);
Tests this annotation for equality with an arbitrary object. This method returns true if and
only if:

® obj is not null;

e obj is an instance of CategoryLineAnnotation;

e both annotations have the same field values.

Instances of this class are Cloneable and Serializable.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 172

See Also

CategoryAnnotation.

23.5 CategoryPointer Annotation
23.5.1 Overview

An annotation for a CategoryPlot that displays a text item and an arrow pointing towards a point
on a chart defined by a (category, value) pair—see figure 23.1 for an example. This class implements
the CategoryAnnotation interface, and was first introduced in JFreeChart 1.0.3.

Java Standard Class Library

Number of Classes By Release

3000
2800
2600
2400
2200
2000
1800 Released 4-Dec-1998 A
1600
1400
1200
1000
800
600
400 -
200 O

Class Count

JDK 1.0 JDK 1.1 JDK 1.2 JDK 1.3 JDK 1.4
Release

Source: Java In A Nutshell (4th Edition) by David Flanagan (O'Reilly)

Figure 23.1: A CategoryPointerdnnotation (see CategoryPointerdnnotationDemol. java)

23.5.2 Constructors
To create a new instance:

= public CategoryPointerAnnotation(String label, Comparable key, double value,

double angle);

Creates a new pointer annotation. The label is the text to be displayed (null not permitted).
The key and value specify the location on the chart for the annotation. The angle specifies the
rotation of the arrow that points at the specified point, in radians. To customise the appearance
of the arrow, use the methods documented in the next section.

23.5.3 General Attributes
In addition to the attributes inherited from CategoryTextAnnotation, this class defines a number of
items concerning the appearance of the arrow that points towards a fixed location on the chart.

To control the angle of the pointer:

= public double getAngle(); [1.0.3]
Returns the angle of the pointer (in radians, using the same conventions as Java’s Arc2D class).

= public void setAngle(double angle); [1.0.3]
Sets the angle of the pointer (in radians, using the same conventions as Java’s Arc2D class).
The arrow points towards a location on the chart (specified in the constructor).

To control the distance between the tip of the arrow and the anchor point on the chart:

= public double getTipRadius(); [1.0.3]
Returns the distance from the anchor point to the tip of the arrow, in Java2D units. The
default value is 10.0.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS

= public void setTipRadius(double radius); [1.0.3]

Sets the distance from the anchor point to the tip of the arrow, in Java2D units. Since the tip
of the arrow is pointing towards the anchor point, this should be a lower value than the base
radius.

To control the length of the arrow:

= public double getBaseRadius(); [1.0.3]

Returns the distance from the anchor point to the base of the arrow, in Java2D units. The
default value is 30.0. The difference between the base radius and the tip radius is the overall
length of the arrow.

= public void setBaseRadius(double radius); [1.0.3]
Sets the distance from the anchor point to the base of the arrow, in Java2D units.

To control the offset from the base of the arrow to the label anchor point:

= public double getLabelOffset(); [1.0.3]
Returns the offset from the base of the arrow to the label, in Java2D units. The default value
is 3.0.

= public void setLabelOffset(double offset); [1.0.3]
Sets the offset from the base of the arrow to the label, in Java2D units.

To control the length of the arrow head:

= public double getArrowLength(); [1.0.3]
Returns the length of the arrow head, in Java2D units. The default value is 5.0.

= public void setArrowLength(double length); [1.0.3]
Sets the length of the arrow head, in Java2D units.

To control the width of the arrow head:

= public double getArrowWidth(); [1.0.3]
Returns the width of the arrow head, in Java2D units. The default value is 3.0.

= public void setArrowWidth(double width); [1.0.3]
Sets the width of the arrow head, in Java2D units.

To control the stroke used to draw the arrow:

= public Stroke getArrowStroke(); [1.0.3]
Returns the stroke used to draw the arrow. The default is BasicStroke(1.0f).

= public void setArrowStroke(Stroke stroke); [1.0.3]
Sets the stroke used to draw the arrow.

To control the color of the arrow:

= public Paint getArrowPaint(); [1.0.3]
Returns the paint used to draw/fill the arrow. The default is Color.black.

= public void setArrowPaint(Paint paint); [1.0.3]
Sets the paint used to draw/fill the arrow.

23.5.4 Other Methods
The following method is called by JFreeChart as required:

= public void draw(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea,
CategoryAxis domainAxis, ValueAxis rangeAxis); [1.0.3]
Draws the annotation. This method is typically called by JFreeChart, not user code.

173

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 174

23.5.5 Equals, Cloning and Serialization
This class overrides the equals() method:

= public boolean equals(Object obj); [1.0.3]
Tests this annotation for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

23.5.6 Notes

Some points to note:

e this class is a subclass of CategoryTextAnnotation;

e a demo (CategoryPointerAnnotationDemol. java) is included in the JFreeChart demo collection.

See Also

CategoryTextAnnotation.

23.6 CategoryText Annotation

23.6.1 Overview

A CategoryAnnotation that can be used to display an item of text at some location (defined by a
(category, value) pair) on a CategoryPlot. This class extends TextAnnotation.

23.6.2 Constructor

To create a new annotation:

= public CategoryTextAnnotation(String text, Comparable category, double value);
Creates a new annotation that displays the specified text at a point corresponding to the
specified value for the given category.

23.6.3 General Attributes

This class inherits a number of attributes from TextAnnotation, and adds a few of its own. The
text for the annotation is drawn relative to an alignment point that is defined on the chart using
the following attributes:

e the category;
e the category anchor point;

e the data value.

To control the category:

= public Comparable getCategory() ;
Returns the category key for this annotation.

= public void setCategory(Comparable category);
Sets the category key for this annotation. If category is null, this method throws an I1legalArgumentException.

To control the category anchor point:

= public CategoryAnchor getCategoryAnchor();
Returns the category anchor point, which helps to determine the position of the alignment
point for the annotation. The default value is CategoryAnchor .MIDDLE.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 175

= public void setCategoryAnchor(CategoryAnchor anchor) ;
Sets the category anchor point, which is used to determine the position of the alignment point
for the annotation. If anchor is null, this method throws an IllegalArgumentException.

To control the value:

= public double getValue();
Returns the value that determines the alignment point for the annotation.

= public void setValue(double value);
Sets the value that determines the alignment point for the annotation.

23.6.4 Other Methods

To draw the annotation:

= public void draw(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea,

CategoryAxis domainAxis, ValueAxis rangeAxis);

Draws the annotation. This method is called by JFreeChart, you shouldn’t need to call it
directly.

23.6.5 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this annotation for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

23.6.6 Notes

Some points to note:

e there is no event notification for annotations, so automatic chart redrawing does not occur
when an annotation is updated;

e CategoryTextAnnotation is a subclass of TextAnnotation;
e a demo (SurveyResultsDemol.java) is included in the JFreeChart demo collection.

See Also

CategoryAnnotation.

23.7 TextAnnotation

23.7.1 Overview

The base class for a text annotation. The class includes font, paint, alignment and rotation settings.
Subclasses will add location information to the content represented by this class. At present, the
only subclass in JFreeChart is CategoryTextAnnotation.

23.7.2 Constructor

The constructor for this class is protected since you won'’t create an instance of this class directly
(use a subclass):

= protected TextAnnotation(String text);
Creates a new text annotation that displays the given text. Default values for the remaining
attributes are:

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 176

e font = new Font("SansSerif", Font.PLAIN, 10);
® paint = Color.black;

® textAnchor = TextAnchor.CENTER;

® rotationAnchor = TextAnchor.CENTER;

® rotationAngle = 0.0;

23.7.3 General Attributes
To control the text displayed by the annotation:

= public String getText();
Returns the text displayed by the annotation (never null).

= public void setText(String text);
Sets the text displayed by the annotation (null is not permitted).

To control the font:

w public Font getFont();
Returns the font used to display the text. This method never returns null.

= public void setFont(Font font);
Sets the font used to display the text. If font is null, this method throws an IllegalArgumentException.

To control the text color:

= public Paint getPaint();
Returns the paint used to draw the text (never null).

= public void setPaint(Paint paint);
Sets the paint used to draw the text. If paint is null, this method throws an IllegalArgumentException.

To control the anchor point that will be aligned to some point (defined by the subclass):

= public TextAnchor getTextAnchor();
Returns the anchor point for the text, this will be aligned to a specified point on the chart
(that is defined by the subclass).

= public void setTextAnchor(TextAnchor anchor);
Sets the anchor point for the text. This will be aligned to some point on the chart (that is
specified by the subclass).

To control the rotation anchor point:

= public TextAnchor getRotationAnchor();
Returns the text anchor point about which any rotation is performed.

= public void setRotationAnchor(TextAnchor anchor);
Sets the rotation anchor point for the text.

To control the rotation angle:

= public double getRotationAngle();
Returns the rotation angle (in radians).

= public void setRotationAngle(double angle);
Sets the rotation angle for the text (in radians). The text is rotated about the rotation anchor
point (see the getRotationAnchor () method).

23.7.4 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this annotation for equality with an arbitrary object. This method returns true if and
only if:

® obj is not null;

e obj is an instance of TextAnnotation;

e obj has the same attributes as this annotation.

Instances of this class are Serializable, but not Cloneable.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 177

23.7.5 Notes

Some points to note:

e the XYTextAnnotation class is NOT a subclass of this class.

See Also

CategoryTextAnnotation.

23.8 XYAnnotation

23.8.1 Overview

An XYAnnotation is a small text or graphical item that can be added to an arbitrary location on a
chart. This interface defines the drawing method that must be supported by annotations that are
to be added to an XYPlot (or an XYItemRenderer). This interface is implemented by:

o XYBoxAnnotation;

o XYDrawableAnnotation;
® XYImageAnnotation;

® XYLineAnnotation;

o XYPointerAnnotation;
® XYPolygonAnnotation;
® XYShapeAnnotation;

® XYTextAnnotation;

You can, of course, provide your own implementations of the interface.

23.8.2 Interface

This interface defines one method for drawing the annotation:

= public void draw(Graphics2D g2, Rectangle2D dataArea, XYPlot plot,

ValueAxis domainAxis, ValueAxis rangeAxis);

Draws the annotation. The dataArea is the space defined by (within) the two axes. If the
annotation defines its location in terms of data values, the axes can be used to convert these
values to Java2D coordinates.

23.8.3 Notes

Some points to note:

e there is no event notification mechanism (yet) for annotations. If you modify an anno-
tation, you will need to manually trigger a redraw of the chart (for example, by calling
chart.setNotify(true));

e a couple of demos (AnnotationDemol.java and AnnotationDemo2.java) are included in the
JFreeChart demo collection.

See Also

AbstractXYAnnotation.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 178

23.9 XYBoxAnnotation

23.9.1 Overview

An XYAnnotation that highlights a rectangular region within the data area of an XYPlot—see figure
23.2 for an example. XYBoxAnnotation is a subclass of AbstractXYAnnotation.

Breakdowns

200,000

150,000

100,000

Hours of Operation

50,000

Production Date

+ Old * New

Figure 23.2: An XYBozAnnotation (see XYBozAnnotationDemol. java)

23.9.2 Constructors

To create a new annotation:

= public XYBoxAnnotation(double x0, double yO, double x1, double y1);
Creates a new annotation covering the rectangular region from (x0, y0) to (x1, y1). The box
annotation will be drawn as a black outline using a 1 unit wide plain stroke (BasicStroke(1.0£)).

= public XYBoxAnnotation(double x0, double yO, double x1, double yi,

Stroke stroke, Paint outlinePaint);

Creates a new annotation covering the rectangular region from (x0, y0) to (x1, y1). The box
annotation will be drawn as an outline using the specified stroke and paint. If either stroke or
paint is null, the annotation will not be visible.

= public XYBoxAnnotation(double x0, double yO, double x1, double yi,

Stroke stroke, Paint outlinePaint, Paint fillPaint);

Creates a new annotation covering the rectangular region from (x0, y0) to (x1, y1). The box
annotation will be drawn and filled using the specified stroke, outline paint and fill paint. If
stroke or outlinePaint is null, no outline will be drawn. If fillPaint is null, the box will not
be filled.

23.9.3 Methods

JFreeChart calls the following method to draw the annotation:

= public void draw(Graphics2D g2, XYPlot plot, Rectangle2D dataArea,

ValueAxis domainAxis, ValueAxis rangeAxis, int rendererIndex, PlotRenderingInfo info);
Draws the annotation within the specified area of the plot. This method is called by JFreeChart,
you won’t normally call it directly from your own code.

23.9.4 Equals, Cloning and Serialization

This class overrides the equals(0Object) method:

= public boolean equals(Object obj);
Tests this annotation for equality with an arbitrary object. The method returns true if and
only if:

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 179

® obj is not null;
e obj is an instance of XYBoxAnnotation;

e both annotations have the same attributes.

Instances of this class are Cloneable (PublicCloneable) and Serializable.

23.9.5 Notes

Some points to note:

the annotation will only be visible if it falls within the current bounds of the plot’s axes;

e you can define a tool tip and/or URL for the annotation, using methods inherited from
AbstractXYAnnotation;

e you can use this annotation with an XYPlot that uses a DateAxis—just specify the relevant
coordinates in terms of milliseconds since 1-Jan-1970;

e a demo (XYBoxAnnotationDemol.java) is included in the JFreeChart demo collection.

See Also

XYAnnotation.

23.10 XYDatalmageAnnotation

23.10.1 Overview

An annotation that enables an image to be drawn (scaled) on an XYPlot within a rectangle that is
defined in data coordinates. A potential application for this is to support basic geographical plotting
by displaying maps in the background of charts. This class was first introduced in JFreeChart 1.0.11.

23.10.2 Constructor

To create a new instance:

= public XYDataIlmageAnnotation(Image image, double x, double y, double w,
double h); [1.0.11]
Creates a new annotation that will display the specified image within the specified rectangle.

23.10.3 Attributes

All the attributes for this class are specified via the constructor and cannot be updated:

w public Image getImage(); [1.0.11]
Returns the image to be displayed by this annotation.

= public double getX(); [1.0.11]
Returns the x-coordinate for the region in which the image will be drawn.

= public double getY(); [1.0.11]
Returns the y-coordinate for the region in which the image will be drawn.

= public double getWidth(); [1.0.11]
Returns the width for the region in which the image will be drawn.

= public double getHeight(); [1.0.11]
Returns the height for the region in which the image will be drawn.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 180

23.10.4 Drawing

Once an annotation has been added to a plot, the plot will take care of drawing it every time the
chart is redrawn. The following method is used:

= public void draw(Graphics2D g2, XYPlot plot, Rectangle2D dataArea,

ValueAxis domainAxis, ValueAxis rangeAxis);

Draws the annotation within the specified dataArea. This method is called by the plot, you
shouldn’t need to call it yourself.

23.10.5 Equals, Cloning and Serialization

This class overrides the equals() method specified in Object:

= public boolean equals(Object obj);

Tests this annotation for equality with an arbitrary object. This method will return true if
object is an instance of XYDataImageAnnotation with the same coordinates and image as this
annotation.

At present, serialization is not supported because images are not automatically serializable. Hope-
fully this will be fixed in a future release by writing our own image serialization code (for instance,
by writing the image data to PNG format, then decoding it again upon deserialization).

See Also

XYImageAnnotation.

23.11 XYDrawableAnnotation

23.11.1 Overview

An XYAnnotation that draws an object at some (z, y) location on an XYPlot. The object can be
any implementation of the Drawable interface (defined in the JCommon class library). Figure 23.3
shows a chart with such an annotation—the small red circle containing the blue crosshair is an
XYDrawableAnnotation.

Marker Demo 1

2w Original Close (02:00) Close Date (02:15)

Bid Start Price

185 . =
180 =
s
. Target Price| [Supplier 1
® Supplier 2
170 o
°
165 °
@
160 /"

Best Bid

01:20 01:30 01:40 01:50 02:00 02:10 02:20 02:30
Time

Figure 23.3: An XYDrawablednnotation (see MarkerDemol.java)

23.11.2 Constructors

To create a new annotation:

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 181

= public XYDrawableAnnotation(double x, double y, double width, double height,

Drawable drawable);

Creates a new annotation that will be drawn within the specified rectangular area (in data
space).

w public XYDrawableAnnotation(double x, double y, double displayWidth,

double displayHeight, double drawScaleFactor, Drawable drawable); [1.0.11]

Creates a new annotation that will draw the drawable at the specified (z, y) location on the
chart, with the specified display width and height (in Java2D units). The drawScaleFactor
allows the annotation to be drawn at a different size then scaled to fit the display space (for
example, specify 2.0 to draw the annotation at twice the size of the display area, then have it
scaled down to fit the display area).

23.11.3 Methods

This class implements the draw() method specified by the XYAnnotation method.

23.11.4 Equals, Cloning and Serialization

This class overrides the equals() method:

= public void equals(Object obj);
Tests this annotation for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable. If you need your charts to be cloneable and
serializable, take care that the Drawable referenced by this annotation is cloneable/serializable.

23.11.5 Notes

Some points to note:

e a couple of demos (MarkerDemol.java, XYDrawableAnnotationDemol.java) are included in the
JFreeChart demo collection.

See Also

XYAnnotation.

23.12 XYImageAnnotation

23.12.1 Overview

An annotation that allows an image to be displayed at an arbitrary (z, y) location on an XYPlot.
To add an image annotation to a plot, use code similar to the following:

XYPlot plot = (XYPlot) chart.getPlot();

Image image = ... // fetch a small image from somewhere
XYImageAnnotation al = new XYImageAnnotation(5.0, 2.0, image);
plot.addAnnotation(al);

You need to ensure that the image is fully loaded before you supply it to the XYImageAnnotation
constructor, otherwise it may not appear the first time your chart is drawn (see section 20.4).

2This is primarily useful for Drawable instances that change layout at different sizes—a good example is a
JFreeChart instance. See XYDrawableAnnotationDemol.java for an example.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 182

23.12.2 Constructor

The following constructors are defined:

= public XYImageAnnotation(double x, double y, Image image);
Equivalent to XYImageAnnotation(x, y, image, RectangleAnchor.CENTER)—see the next construc-
tor.

= public XYImageAnnotation(double x, double y, Image image, RectangleAnchor anchor); [1.0.4]
Creates an annotation that will display the specified image at the given (z, y) location. The
coordinates are specified in data-space (that is, the axis coordinates of the chart) and the image
will be aligned to this point according to the anchor setting. If image or anchor is null, this
method throws an IllegalArgumentException.

23.12.3 Attributes

All the attributes for this class are specified via the constructor and cannot be updated:

= public double getX(); [1.0.4]
Returns the x-coordinate for the anchor point to which the image will be aligned.

= public double getY(); [1.0.4]
Returns the y-coordinate for the anchor point to which the image will be aligned.

= public Image getImage(); [1.0.4]
Returns the image to be displayed by this renderer.

= public RectangleAnchor getImageAnchor(); [1.0.4]
Returns the image anchor, which will be aligned to the (z, y) location on the chart when the
image annotation is displayed.

23.12.4 Drawing
Once an annotation has been added to a plot, the plot will take care of drawing it every time the
chart is redrawn. The following method is used:

w public void draw(Graphics2D g2, XYPlot plot, Rectangle2D dataArea,

ValueAxis domainAxis, ValueAxis rangeAxis);

Draws the annotation within the specified dataArea. This method is called by the plot, you
shouldn’t need to call it yourself.

23.12.5 Equals, Cloning and Serialization

This class overrides the equals() method specified in Object:

= public boolean equals(Object object);

Tests this annotation for equality with an arbitrary object. This method will return true
if object is an instance of XYImageAnnotation with the same coordinates and image as this
annotation.

The annotation can be cloned:

= public Object clone() throws CloneNotSupportedException;
Returns a clone of the annotation.

At present, serialization is not supported because images are not automatically serializable. Hope-
fully this will be fixed in a future release by writing our own image serialization code (for instance,
by writing the image data to PNG format, then decoding it again upon deserialization).

23.12.6 Notes

Some points to note:

e the PlotOrientationDemol application (source code is included in the JFreeChart Demo dis-
tribution) includes an image annotation for each sub-chart.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 183

See Also

XYAnnotation.

23.13 XYLineAnnotation

23.13.1 Overview

A simple annotation that draws a line between a starting point (z0, y0) and an ending point (z1,
y1) on an XYPlot. To add a line annotation to a plot, use code similar to the following:

XYPlot plot = (XYPlot) chart.getPlot();

XYLineAnnotation al = new XYLineAnnotation(1.0, 2.0, 3.0, 4.0,
new BasicStroke(1.5f), Color.red);

plot.addAnnotation(al);

23.13.2 Constructors

To create a new annotation:

= public XYLineAnnotation(double x1, double yl, double x2, double y2);
Creates an annotation that will draw a line from (x1, y1) to (x2, y2) on the chart. By default,
the line is black and uses a stroke width of 1.0.

= public XYLineAnnotation(double x1, double yl1, double x2, double y2,

Stroke stroke, Paint paint);

Creates an annotation that will draw a line from (x1, y1) to (x2, y2) on the chart. The line
is drawn using the specified stroke and paint.

23.13.3 Drawing

Once an annotation has been added to a plot, the plot will take care of drawing it every time the
chart is redrawn. The following method is used:

= public void draw(Graphics2D g2, XYPlot plot, Rectangle2D dataArea, ValueAxis domainAxis,
ValueAxis rangeAxis);

Draws the annotation within the specified dataArea. This method is called by the plot, you
shouldn’t need to call it yourself.

23.13.4 Equals, Cloning and Serialization

This class overrides the equals() method specified in Object:

= public boolean equals(Object object);

Tests this annotation for equality with an arbitrary object. This method will return true if
object is an instance of XYLineAnnotation with the same coordinates, stroke and paint settings
as this annotation.

The annotation can be cloned:

= public Object clone() throws CloneNotSupportedException;
Returns a clone of the annotation.

This class is Serializable.

23.13.5 Notes

Some points to note:

e if you want to use a line annotation on a time series chart, the x-coordinates of the annotation
should be specified in “milliseconds since 1-Jan-1970, GMT”.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 184

See Also

XYAnnotation.

23.14 XYPointerAnnotation

23.14.1 Overview

An annotation that displays an arrow pointing towards a specific (z, y) location on an XYPlot (see
figure 23.4). The arrow can have a label at one end.

®

East Bid

Figure 23.4: An XYPointerAnnotation erample

23.14.2 Usage

To add a pointer annotation to an XYPlot:

XYPlot plot = (XYPlot) chart.getPlot();
XYPointerAnnotation pointer = new XYPointerAnnotation(
"Best Bid", millis, 163.0, 3.0 * Math.PI / 4.0

)5

pointer.setTipRadius(10.0);
pointer.setBaseRadius(35.0);

pointer.setFont (new Font("SansSerif", Font.PLAIN, 9));
pointer.setPaint(Color.blue);
pointer.setTextAnchor (TextAnchor .HALF_ASCENT_RIGHT) ;
plot.addAnnotation(pointer) ;

23.14.3 Constructor

To create a new pointer annotation:

= public XYPointerAnnotation(String label, double x, double y, double angle);
Creates a new pointer annotation to highlight the specified (z, y) location on the chart.

23.14.4 General Attributes

To control the angle of the arrow:

= public double getAngle();
Returns the angle of the arrow (in radians).

= public void setAngle(double angle);
Sets the angle of the arrow (in radians). If you imagine a clockface, an angle of 0 results in an
arrow pointing from 3 o’clock to the center of the clock face, with positive values proceeding
from 3 o’clock in a clockwise direction.

To control the distance between the (z, y) location and the tip of the arrow:

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 185

= public double getTipRadius();
Returns the radius of the circle that determines how far from the (z, y) location the tip of the
arrow is.

= public void setTipRadius(double radius);
Sets the radius of the circle that determines the end point of the arrow.

To control the distance between the (z, y) location and the base of the arrow:

= public double getBaseRadius();
Returns the radius of the circle that determines how far from the (z, y) location to the base of
the arrow.

= public void setBaseRadius(double radius);
Sets the radius of the circle that determines the base point for the arrow.

To control the offset between the base of the arrow and the label anchor point:

= public double getLabelOffset();
Returns the label offset (in Java2D units).

= public void setLabelOffset(double offset);
Sets the label offset from the base of the arrow (in Java2D units).

To control the length of the arrow head:

= public double getArrowLength();
Returns the length of the arrow head (in Java2D units).

= public void setArrowLength(double length);
Sets the length of the arrow head (in Java2D units).

To control the width of the arrow head:

= public double getArrowWidth();
Returns the width of the arrow head in Java2D units.

= public void setArrowWidth(double width);
Sets the width of the arrow head in Java2D units.

To control the Stroke used to draw the arrow:

= public Stroke getArrowStroke();
Returns the stroke used to draw the arrow (never null).

= public void setArrowStroke(Stroke stroke);
Sets the stroke used to draw the arrow (null not permitted).

To control the Paint used to draw the arrow:

= public Paint getArrowPaint();
Returns the paint used to draw the arrow (never null).

= public void setArrowPaint(Paint paint);
Sets the paint used to draw the arrow (null not permitted).

23.14.5 Other Methods

To draw the annotation (this method is called by the plot, you shouldn’t need to call it directly
yourself):

= public void draw(Graphics2D g2, XYPlot plot, Rectangle2D dataArea, ValueAxis domainAxis,
ValueAxis rangeAxis);
Draws the annotation.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 186

23.14.6 Notes
Some points to note:

e annotations don’t current have a change notification mechanism, so charts do not automati-
cally refresh when an annotation is modified;

e a demo (XYPointerAnnotationDemol.java) is included in the JFreeChart demo collection.

See Also

XYAnnotation.

23.15 XYPolygonAnnotation

23.15.1 Overview

A simple annotation that draws a polygon on an XYPlot. The polygon’s coordinates are specified
in data space (that is, the coordinate system defined by the plot’s axes). See figure 23.5 for an
example.

XYPolygonAnnotationDemo1

1.0 L]

17 18 1.9 20 21 22 23 24 25 26 27 28 29 30 31 32
X

m Series 1 ® Series 2

Figure 23.5: An XYPolygonAnnotation (See XYPolygondnnotationDemol. java)

23.15.2 Usage

A demo is provided by XYPolygonAnnotationDemol. java.

23.15.3 Constructors

There are several constructors for this class. For each one, the first argument is an array containing
the (z, y) coordinates of the polygon’s vertices. These coordinates should be specified using the
coordinate system defined by the chart’s axes.

= public XYPolygonAnnotation(double[] polygon);
Creates a new annotation that draws a polygon with the supplied coordinates. The polygon
will be drawn with a black outline, one Java2D unit wide. The polygon is not filled.

= public XYPolygonAnnotation(double[] polygon, Stroke stroke, Paint outlinePaint)
Creates a new annotation that draws the specified polygon with the given stroke and outline
paint. The polygon is not filled.

= public XYPolygonAnnotation(double[] polygon, Stroke stroke, Paint outlinePaint,

Paint fillPaint);

Creates a new annotation that draws a polygon with the specified vertices, using the supplied
stroke, outlinePaint and fillPaint.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 187

For all constructors, the polygon array must contain an even number of items, since it contains a
sequence of (z, y) coordinates.

23.15.4 Methods
To get the coordinates of the polygon:

= public double[] getPolygonCoordinates(); [1.0.2]
Returns the coordinates of the polygon’s vertices.

To get the outline attributes for the annotation:

= public Stroke getOutlineStroke(); [1.0.2]
Returns the stroke used to draw the outline of the polygon. If this is null, no outline is drawn.

= public Paint getOutlinePaint(); [1.0.2]
Returns the paint used to draw the outline of the polygon. If this is null, no outline is drawn.

To get the fill paint for the annotation:

= public Paint getFillPaint(); [1.0.2]
Returns the paint used to fill the polygon. If this is null, the polygon is not filled.

The annotation is drawn (by the plot) using this method (which you shouldn’t need to call yourself):

= public void draw(Graphics2D g2, XYPlot plot, Rectangle2D dataArea,
ValueAxis domainAxis, ValueAxis rangeAxis, int rendererIndex,
PlotRenderingInfo info);

Draws the annotation within the specified dataArea.

23.15.5 Equals, Cloning and Serialization

To test this class for equality with an arbitrary object:

= public boolean equals(Object obj);
Returns true if this annotation is equal to the specified obj. This method will return true if
and only if:

® obj is not null;
e obj is an instance of XYPolygonAnnotation;
e obj defines a polygon with the same vertices (in the same order) as this annotation;

e obj has the same stroke, outlinePaint and fillPaint as this annotation;

This class is cloneable and implements the PublicCloneable interface. This class is also serializable.

23.15.6 Notes
Some points to note:
e the polygon annotation will only be visible on a chart if it falls within the current axis bounds;

e for a demo, see XYPolygonAnnotationDemol. java.

See Also

XYAnnotation.

23.16 XYShapeAnnotation

23.16.1 Overview

A simple annotation that draws a shape on an XYPlot. The shape’s coordinates are specified in
“data space” (that is, the coordinate system defined by the plot’s axes).

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 188

23.16.2 Constructors

This class has several constructors. The attributes of the annotation are specified via the constructor
and cannot be modified subsequently:

= public XYShapeAnnotation(Shape shape);
Creates a new annotation that will draw the given shape with a black outline.

w public XYShapeAnnotation(Shape shape, Stroke stroke, Paint outlinePaint);
Creates a new annotation that will draw the given shape with the specified stroke and outline
paint.

= public XYShapeAnnotation(Shape shape, Stroke stroke, Paint outlinePaint, Paint fillPaint);
Creates a new annotation that will draw the given shape with the specified stroke, outline paint
and fill paint. If either the stroke or outlinePaint is null, no outline is drawn. If the fillPaint

is null, the shape is not filled.

23.16.3 Methods

There are no methods for setting the attributes of the annotation—these are set in the constructor
and cannot be modified.

The following method is called by the plot to draw the annotation, normally you won’t need to call
it directly:

= public void draw(Graphics2D g2, XYPlot plot, Rectangle2D dataArea, ValueAxis domainAxis,
ValueAxis rangeAxis, int rendererIndex, PlotRenderingInfo info);
Draws the annotation.

23.16.4 Equals, Cloning and Serialization
To test this annotation for equality with an arbitrary object:

= public boolean equals(Object obj);
Tests the annotation for equality with obj. This method returns true if and only if:

® obj is not null;
e obj is an instance of XYShapeAnnotation;

e obj has the same attributes as this annotation.

This class is Cloneable® and Serializable.

23.16.5 Notes

Before drawing, the shape must be transformed to Java2D coordinates. The transformation code
assumes linear scales on the axes, so this type of annotation may not work well with logarithmic
axes.

See Also

XYAnnotation.

23.17 XYTextAnnotation

23.17.1 Overview

A text annotation that can be added to an XYPlot. You can use this class to add a small text label
at some (z, y) location on a chart. This class is a subclass of AbstractXYAnnotation.

3Technically, this probably isn’t necessary since instances of this class are immutable.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 189

23.17.2 Usage

To add a simple annotation to an XYPlot:

XYPlot plot = (XYPlot) chart.getPlot();
XYAnnotation annotation = new XYTextAnnotation("Hello World!", 10.0, 25.0);
plot.addAnnotation(annotation);

The text will be centered on the specified (z, y) location.

23.17.3 Constructors

To create a new annotation:

= public XYTextAnnotation(String text, double x, double y);
Creates a new text annotation for display at the specified (x, y) location (in data space). An
exception is thrown if the text argument is null.

23.17.4 General Attributes

To control the text for the annotation:

= public String getText();
Returns the text displayed by the annotation (never null). The initial value is specified in the
constructor.

= public void setText(String text);
Sets the text for the annotation (no event is generated). If text is null, this method throws an
IllegalArgumentException.

To control the location on the chart that the annotation will be aligned to:

= public double getX();
Returns the x-coordinate (in data space).

= public void setX(double x);
Sets the x-coordinate (in data space) for the annotation. No event is generated.

= public double getY();
Returns the y-coordinate (in data space).

w public void setY(double y);
Sets the y-coordinate (in data space) for the annotation. No event is generated.

To control the font used to display the text annotation:

= public Font getFont();
Returns the font used to display the text annotation (never null). The default value is
Font ("SansSerif", Font.PLAIN, 10).

= public void setFont(Font font);
Sets the font used to display the text annotation (no event is generated). If font is null, this
method throws an IllegalArgumentException.

To control the paint used to display the text annotation:

= public Paint getPaint();
Returns the paint used to display the text (never null). The default value is Color.black.

= public void setPaint(Paint paint);
Sets the paint used to display the text annotation (no event is generated). If paint is null, this
method throws an IllegalArgumentException.

To control the background paint for the annotation:

= public Paint getBackgroundPaint(); [1.0.13]
Returns the background paint for the text annotation. The default value is null (transparent
background).

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 190

= public void setBackgroundPaint(Paint paint); [1.0.13]
Sets the background paint for the annotation. If you set this to null, the background is
transparent.

To control whether or not an outline is drawn for the annotation:

= public boolean isOutlineVisible(); [1.0.13]
Returns true if an outline will be drawn around the annotation, and false otherwise. The
default value is false.

= public void setOutlineVisible(boolean visible); [1.0.13]
Sets the flag that controls whether or not an outline is drawn for the annotation.

The outline paint and stroke are controlled via the following methods:

= public Paint getOutlinePaint(); [1.0.13]
Returns the outline paint (never null). The default value is Color.black.

= public void setOutlinePaint(Paint paint); [1.0.13]
Sets the paint used to draw the outline for the annotation (no event is generated). If paint is
null, this method throws an IllegalArgumentException.

= public Stroke getOutlineStroke(); [1.0.13]
Returns the outline stroke (never null). The default value is BasicStroke(0.5f).

= public void setOutlineStroke(Stroke stroke); [1.0.13]
Sets the stroke used to draw the outline for the annotation (no event is generated). If stroke
is null, this method throws an IllegalArgumentException.

The text anchor defines a point on the text’s framing rectangle that will be aligned to the (z, y)
location on the chart:

= public TextAnchor getTextAnchor();

Returns the text anchor (never null). This is a point on the framing rectangle for the text that
is aligned to the (x, y) location on the chart. The default value is TextAnchor.CENTER (in other
words, the text annotation will be centered over the (z, y) location).

= public void setTextAnchor(TextAnchor anchor)
Sets the text anchor (no event is generated). If anchor is null, this method throws an IllegalArgumentException.

The rotation anchor defines a point on the text’s framing rectangle about which the text will be
rotated:

w public TextAnchor getRotationAnchor();
Returns the rotation anchor (never null). The default value is TextAnchor.CENTER.

= public void setRotationAnchor(TextAnchor anchor);
Sets the rotation anchor (no event is generated). If anchor is null, this method throws an
IllegalArgumentException.

To control the rotation angle:

= public double getRotationAngle();
Returns the rotation angle, which is measured in radians (clockwise). The default value is 0.0.

= public void setRotationAngle(double angle);
Sets the rotation angle in radians (no event is generated).

23.17.5 Other Methods

The following method is used to draw the annotation. It is called by the plot, you won’t normally
need to call this method yourself:

w public void draw(Graphics2D g2, XYPlot plot, Rectangle2D dataArea,
ValueAxis domainAxis, ValueAxis rangeAxis);
Draws the annotation.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 191

23.17.6 Equals, Cloning and Serialization
This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this annotation for equality with an arbitrary object (which may be null).

Instances of this class are Cloneable (PublicCloneable) and Serializable.

23.17.7 Notes

Some points to note:

e annotations added directly to the plot are positioned relative to the primary axes. You can
also add the annotation to an XYItemRenderer, in which case the annotation is drawn relative
to the axes used by that renderer;

e a demo (AnnotationDemol.java) is included in the JFreeChart demo collection;

e the XYPointerAnnotation subclass can be used to display a label with an arrow pointing to
some (z, y) value.

See Also

XYAnnotation.

23.18 XYTitleAnnotation

23.18.1 Overview

An annotation that can place any Title instance within a chart—for example, see 23.6 where a
legend is placed inside the plot area using this annotation type.

Legal & General Unit Trust Prices

180
170
160
150
=
5 140
-
D 130
]
.2 120
=
o
110
100
90
80 ~®- L&G European Index Trust -#- L&G UK Index Trust

Mar-2001 May-2001 Jul-2001 Sep-2001 Nov-2001 Jan-2002 Mar-2002 May-2002 Jul-2002)
Date

Figure 23.6: An XYTitleAnnotation (See XYTitleAnnotationDemol. java)

This class was introduced in version 1.0.11.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS

23.18.2 Constructors

To create a new annotation:

= public XYTitleAnnotation(double x, double y, Title title); [1.0.11]
Creates a new annotation that will centre the title on the specified (z, y) location.

= public XYTitleAnnotation(double x, double y, Title title,
RectangleAnchor anchor); [1.0.11]
Creates a new annotation that will align the title according to the specified anchor.

23.18.3 General Attributes

The general attributes for this class are:

= public XYCoordinateType getCoordinateType(); [1.0.11]
Returns the coordinate type that was set in the constructor.

= public double getX(); [1.0.11]
Returns the x-coordinate for the annotation, as specified in the constructor.

= public double getY(); [1.0.11]
Returns the y-coordinate for the annotation, as specified in the constructor.

w public Title getTitle(); [1.0.11]
Returns the title that is displayed by this annotation.

= public RectangleAnchor getTitleAnchor(); [1.0.11]
Returns the anchor position for this annotation (never null).

= public double getMaxWidth(); [1.0.11]
Returns the maximum width for the annotation (this is specified as a percentage of the plot
width).

= public void setMaxWidth(double max); [1.0.11]
Sets the maximum width for the annotation, as a percentage of the plot width.

= public double getMaxHeight(); [1.0.11]
Returns the maximum height for the annotation (this is specified as a percentage of the plot
height).

= public void setMaxHeight(double max); [1.0.11]
Sets the maximum height for the annotation, as a percentage of the plot height.

23.18.4 Other Methods
The remaining methods are used by JFreeChart—you shouldn’t need to call them directly:

= public void draw(Graphics2D g2, XYPlot plot, Rectangle2D dataArea, ValueAxis domainAxis,
ValueAxis rangeAxis, int rendererIndex, PlotRenderingInfo info); [1.0.11]
Draws the annotation.

23.18.5 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this annotation for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

23.18.6 Notes

A demo (XYTitleAnnotationDemol.java) is included in the JFreeChart demo collection.

See Also

XYAnnotation.

Chapter 24

Package: org.jfree.chart.axis

24.1 Overview
This package contains all the axis classes plus a few assorted support classes and interfaces:

e the CategoryPlot and XYPlot classes maintain references to two axes (by default), which we
refer to as the domain axis and range axis. These terms are based on the idea that these plots
are providing a visual representation of a function that maps a set of domain values onto a
set of range values. For most purposes, you can think of the domain axis as the X-azis and
the range axis as the Y-axis, but we prefer the more generic terms.

e the default settings provided by the axis classes should work well for a wide range of appli-
cations. However, there are many ways to customise the behaviour of the axes by modifying
attributes via the JFreeChart API. Be sure to read through the API documentation to become
familiar with the options that are available.

e a powerful feature of JFreeChart is the support for multiple domain and range axes on a
single plot. If you plan to make use of this feature, you should refer to section 13 for more
information.

The axis classes are Cloneable and Serializable.

24.2 Axis

24.2.1 Overview

An abstract base class representing an axis. Some subclasses of Plot, including CategoryPlot and
XYPlot, will use axes to display data.

Figure 24.1 illustrates the axis class hierarchy.

24.2.2 Constructors

The constructors for this class are protected, you cannot create an instance of this class directly—
you must use a subclass.

24.2.3 Attributes

The attributes maintained by the Axis class are listed in Table 24.1. There are methods to read
and update most of these attributes. In most cases, updating an axis attribute will result in an
AxisChangeEvent being sent to all (or any) registered listeners.

The default values used to initialise the axis attributes are listed in Table 24.2.

193

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 194

Axis
CategoryAxis ValueAxis
SubCategoryAxis NumberAxis DateAxis
CategoryAxis3D /4 \
NumberAxis3D SymbolAxis
LogarithmicAxis
Figure 24.1: Axis classes
Attribute: Description:
plot The plot to which the axis belongs.
visible A flag that controls whether or not the axis is visible.
label The axis label.
labelFont The font for the axis label.
labelPaint The foreground colour for the axis label.
labellnsets The space to leave around the outside of the axis label.
labelAngle The angle of rotation for the axis label.
azisLine Visible A flag that controls whether or not a line is drawn for the axis.
axisLinePaint The paint used to draw the axis line if it is visible.
azisLineStroke The stroke used to draw the axis line if it is visible.
tickLabels Visible A flag controlling the visibility of tick labels.
tickLabelFont The font for the tick labels.
tickLabelPaint The color for the tick labels.
tickLabellnsets The space to leave around the outside of the tick labels.
tickMarks Visible A flag controlling the visibility of tick marks.
tickMarkStroke The stroke used to draw the tick marks.
tickMarkPaint The paint used to draw the tick marks.
tickMarkInsideLength The amount by which the tick marks extend into the plot area
(in Java2D units).
tickMarkOutsideLength | The amount by which the tick marks extend outside the plot
area (in Java2D units).

Table 24.1: Attributes for the Azis class

24.2.4 Usage

To change the attributes of an axis, you must first obtain a reference to the axis. Usually, you will
obtain the reference from the plot that uses the axis. For example:

CategoryPlot plot = (CategoryPlot) chart.getPlot();
CategoryAxis axis = plot.getDomainAxis();
// change axis attributes here...

Notice that the getDomainAxis () method returns a particular subclass of Axis (CategoryAxis in this
case). That’s okay, because the subclass inherits all the attributes defined by Axis anyway.

24.2.5 The Axis Label

The axis label typically describes what an axis is measuring (for example, “Sales in US$”). To
access the axis label:

= public String getLabel();
Returns the axis label (possibly null).

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 195

Name: Value:

DEFAULT_AXIS_LABEL FONT new Font("SansSerif", Font.PLAIN, 14);
DEFAULT_AXIS_LABEL_PAINT Color.black;

DEFAULT_AXIS_LABEL_INSETS | new Imsets(2, 2, 2, 2);
DEFAULT_TICK_LABEL_FONT new Font("SansSerif", Font.PLAIN, 10);
DEFAULT_TICK_LABEL_PAINT Color.black;

DEFAULT_TICK_LABEL_INSETS | new Imsets(2, 1, 2, 1);
DEFAULT_TICK_STROKE new BasicStroke(1);

Table 24.2: Azis class default attribute values

= public void setLabel(String label);
Sets the axis label and sends an AxisChangeEvent to all registered listeners. If you set the label
to null, no label is displayed for the axis.

To access the font used to display the axis label:

= public Font getLabelFont();
Returns the Font used to display the axis label.

= public void setLabelFont(Font font);
Sets the Font used to display the axis label and sends an AxisChangeEvent to all registered
listeners.

To access the paint used to display the axis label:

= public Paint getLabelPaint();
Returns the paint used to display the axis label.

= public void setLabelPaint(Paint paint);
Sets the paint used to display the axis label and sends an AxisChangeEvent to all registered
listeners.

To control the rotation angle for the axis label:

= public double getLabelAngle();
Returns the angle of rotation (in radians) for the axis label. The default value is 0.0.

= public void setLabelAngle(double angle);
Sets the angle of rotation for the axis label and sends an AxisChangeEvent to all registered
listeners. The angle is specified in radians.

24.2.6 The Axis Line

The axis draws a line along the edge of the plot’s data area:

= public boolean isAxisLineVisible();
Returns true if the axis draws a line along the edge of the data area, and false otherwise. The
default value is true.

= public void setAxisLineVisible(boolean visible);
Sets the flag that controls whether or not a line is drawn along the edge of the data area by
the axis, and sends an AxisChangeEvent to all registered listeners.

The stroke used to draw the axis line (if it is visible) is controlled by the following methods:

= public Stroke getAxisLineStroke();
Returns the stroke used to draw the axis line (never null). The default value is BasicStroke(1.0f).

= public void setAxisLineStroke(Stroke stroke);
Sets the stroke used to draw the axis line and sends an AxisChangeEvent to all registered listeners.
If stroke is null, this method throws an IllegalArgumentException.

The paint used to draw the axis line (if it is visible) is controlled by the following methods:

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 196

= public Paint getAxisLinePaint();
Returns the paint used to draw the axis line (never null). The default value is Color.GRAY.

= public void setAxisLinePaint(Paint paint);
Sets the paint used to draw the axis line and sends an AxisChangeEvent to all registered listeners.
If paint is null, this method throws an IllegalArgumentException.

Note that the CategoryPlot and XYPlot classes also draw an outline around the data area. The
outline is drawn before (under) the axis line(s). The plot outline stroke and paint are defined in
the Plot class.

24.2.7 Tick Marks and Labels

It is common for axes to have small marks at regular intervals to show the scale of values displayed
by the axis. In JFreeChart, we refer to these marks as “tick marks”, and the labels corresponding
to these marks as “tick labels”. This class defines the basic attributes that control the appearance
of tick marks and labels, but leaves the actual generation and formatting up to specific subclasses.

To control the visibility of the tick marks for an axis:

= public boolean isTickMarksVisible();
Returns the flag that controls whether or not the tick marks are visible. The default value is

true.

w public void setTickMarksVisible(boolean flag);
Sets the flag that controls whether or not tick marks are visible, then sends an AxisChangeEvent
to all registered listeners.

To control the stroke used to draw the tick marks:

= public Stroke getTickMarkStroke();
Returns the stroke used to draw the tick marks (never null). The default value is BasicStroke(1.0f).

= public void setTickMarkStroke(Stroke stroke);
Sets the stroke used to draw the tick marks (null not permitted) then sends an AxisChangeEvent
to all registered listeners.

To control the paint used to draw the tick marks:

= public Paint getTickMarkPaint();
Returns the paint used to draw the tick marks (never null). The default value is Color.black.

= public void setTickMarkPaint(Paint paint);
Sets the paint used to draw the tick marks (null not permitted) then sends an AxisChangeEvent
to all registered listeners.

To control the length of the tick marks, you can set the “inside” and “outside” lengths:

= public float getTickMarkInsideLength();
Returns the length of the tick mark on the inside of the data area, in Java2D units. The default
value is 0.0f.

= public void setTickMarkInsideLength(float length);
Sets the length of the tick mark on the inside of the data area, in Java2D units, and sends an
AxisChangeEvent to all registered listeners.

= public float getTickMarkOutsideLength();
Returns the length of the tick mark extension into the plot area, in Java2D units. The default
value is 2.0f.

w public void setTickMarkOutsideLength(float length);
Sets the length of the tick mark on the outside of the data area, in Java2D units, and sends an
AxisChangeEvent to all registered listeners.

To control the visibility of the tick labels for an axis:

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 197

= public boolean isTickLabelsVisible();
Returns the flag that controls whether or not the tick labels are visible. The default value is

true.

= public void setTickLabelsVisible(boolean flag);
Sets the flag that controls whether or not the tick labels are visible and sends an AxisChangeEvent
to all registered listeners.

To control the font used to draw the tick labels:

= public Font getTickLabelFont();
Returns the tick label font (never null). The default value is Font("SansSerif", Font.PLAIN,
10).

= public void setTickLabelFont(Font font);
Sets the tick label font and sends an AxisChangeEvent to all registered listeners. If font is null,
this method throws an IllegalArgumentException.

To control the paint used to draw the tick labels:

= public Paint getTickLabelPaint();
Returns the tick label paint. The default value is Color.black.

= public void setTickLabelPaint(Paint paint);
Sets the tick label paint and sends an AxisChangeEvent to all registered listeners. If paint is
null, this method throws an IllegalArgumentException.

24.2.8 The Fixed Dimension

It is possible to specify a fixed “dimension” for an axis. This is an ugly hack to help align subplots
in the combined plots. For a vertical axis, the fixed dimension applies to the width of the axis and
for a horizontal axis the fixed dimension applies to the height of the axis.

= public double getFixedDimension();
Returns the fixed dimension for the axis, in Java2D units.

= public void setFixedDimension(double dimension);
Sets the fixed dimension for the axis, in Java2D units. During layout, if the axis width or
height (depending on the orientation) is less than this value, it is increased to match dimension.
The value defaults to 0.0 which means it is ignored.

Note that the CategoryAxis class completely ignores this setting.

24.2.9 Other Methods
All axes are drawn by the plot that owns the axis, using this method:

= public abstract AxisState draw(Graphics2D g2, double cursor,

Rectangle2D plotArea, Rectangle2D dataArea, RectangleEdge edge);

Draws the axis along the specified edge of the data area. Given that there may be more than
one axis on a particular edge, the cursor value specifies the distance from the edge that the axis
should be drawn (to take account of other axes that have already been drawn). An AxisState
object is returned which provides information about the axis (for example, the tick values which
the plot will use to draw gridlines if they are visible).

All axes are given the opportunity to refresh the axis ticks during the drawing process, which allows
for dynamic adjustment depending on the amount of space available for drawing the axis:

= public abstract List refreshTicks(Graphics2D g2, AxisState state,
Rectangle2D plotArea, Rectangle2D dataArea, RectangleEdge edge);
Creates a list of ticks for the axis and updates the axis state.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 198

24.2.10 Change Notification

This class implements a change notification mechanism that is used to notify other objects whenever
an axis is changed in some way. This is part of a JFreeChart-wide mechanism that makes it possible
to receive notifications whenever a component of a chart is changed. Most often, such notifications
result in the chart being redrawn.

The following methods are used:

= public void addChangelListener (AxisChangelistener listener);
Registers an object to receive notification whenever the axis changes.

= public void removeChangelListener (AxisChangelistener listener);
Deregisters an object, so that it no longer receives notification when the axis changes.

= public void notifyListeners(AxisChangeEvent event);
Notifies all registered listeners that a change has been made to the axis.

See Also

CategoryAxis, DateAxis, NumberAxis, AxisChangeEvent, AxisChangeListener.

24.3 AxisCollection

24.3.1 Overview

A storage structure that is used to record the axes that have been assigned to the top, bottom, left
and right sides of a plot.

24.3.2 Notes

Axis collections are maintained only temporarily during the process of drawing a chart.

24.4 AxisLocation

24.4.1 Overview

This class is used to represent the possible axis locations for a 2D chart:
® AxisLocation.TOP_OR_LEFT;
® AxisLocation.TOP_OR_RIGHT,
® AxisLocation.BOTTOM_OR_LEFT,

® AxisLocation.BOTTOM_OR_RIGHT;

The final position of the axis is dependent on the orientation of the plot (horizontal or vertical) and
whether the axis is being used as a domain or a range axis.

24.4.2 Notes

The axis location is set using methods in the CategoryPlot and XYPlot classes.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 199

24.5 AxisSpace
24.5.1 Overview

This class is used to record the amount of space (in Java2D units) required to display the axes
around the edges of a plot. Since the plot may contain many axes (or, in the most complex case,
many subplots containing many axes) this class is used to collate the space requirements for all the
axes.

plotArea
top

dataArea

left right

bottom

A

Figure 24.2: AzisSpace Attributes

Axes are always drawn around the edges of the data area but should never extend outside the plot
area.

24.5.2 Methods

There are methods to get and set each of the attributes top, bottom, left and right maintained by
this class.

To add space to a particular edge:

= public void add(double space, RectangleEdge edge);
Adds the specified amount of space (in Java2D units) to one edge.

Sometimes you want to ensure that there is at least a specified amount of space for the axis along
a particular edge (this is used to ensure that the data areas in combined plots are aligned). The
following methods achieve this:

= public void ensureAtLeast(double space, RectangleEdge edge);
Ensures that there is at least the specified amount of space for the axes along the specified
edge.

= public void ensureAtLeast(AxisSpace space);
As above, but applied to all the edges.

Given a rectangle and an instance of AxisSpace, you can calculate the size of an inner rectangle
(essentially this is how the data area is computed from the plot area):

= public Rectangle2D shrink(Rectangle2D area, Rectangle2D result);
Calculates an inner rectangle based on the current space settings. If result is null a new
Rectangle2D is created for the result, otherwise the supplied rectangle is recycled.

24.6 AxisState

24.6.1 Overview

Instances of this class are used to record state information for an axis during the process of drawing
the axis to some output target.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 200

24.6.2 Notes

By recording state information per drawing of an axis, it should be possible for separate threads to
draw the same axis to different output targets simultaneously without interfering with one another.
This is part of an effort to (eventually) make JFreeChart thread-safe.

24.7 CategoryAnchor

24.7.1 Overview
An enumeration of the anchor points within the space allocated for a single category on a CategoryAxis:

Default: ‘ Value:

CategoryAnchor.START The start of the category.
CategoryAnchor .MIDDLE | The middle of the category.
CategoryAnchor.END The end of the category.

24.7.2 Usage

This class is used to control the position of the domain axis gridlines drawn in a CategoryPlot (see
the setDomainGridlinePosition() method).

24.8 CategoryAxis

24.8.1 Overview

A category axis is used as the domain axis in a CategoryPlot. Categories are displayed at regular
intervals along the axis, with a gap before the first category (the lower margin), a gap after the last
category (the upper margin) and a gap between each category (the category margin).

Category Axis

<

»
w Lag
F——1 CATEGORY1 |——1 CATEGORY2 F——1 CATEGORYN A
lowerMargin upperMargin

categoryMargin

Figure 24.3: The CategoryAzis margins

The axis will usually display a label for each category. There are a range of options for controlling
the position, alignment and rotation of the labels—these are described in section 24.8.6.

24.8.2 Constructor

This class has two contructors:

= public CategoryAxis();
Equivalent to CategoryAxis(null)—see the next constructor.

= public CategoryAxis(String label);
Creates a new category axis with the specified label. If you prefer no axis label, you can use
null for the label argument. All other attributes are set to default values.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 201

Attribute: Description:

lowerMargin The margin that appears before the first category, expressed as
a percentage of the overall axis length (defaults to 0.05 or five
percent).

upperMargin The margin that appears after the last category, expressed as a
percentage of the overall axis length (defaults to 0.05 or five per-
cent).

categoryMargin The margin between categories, expressed as a percentage of the

overall axis length (to be distributed between N-1 gaps, where N
is the number of categories). The default value is 0.20 (twenty

percent).
categoryLabel PositionOffset | The offset between the axis line and the category labels.
categoryLabel Positions A structure that defines label positioning information for each

possible axis location (the axis may be located at the top, bottom,
left or right of the plot).

Table 24.3: Attributes for the CategoryAzis class

24.8.3 Attributes

The attributes maintained by the CategoryAxis class are listed in Table 24.3. These attributes are
in addition to those inherited from the Axis class (see section 24.2.3 for details).
The following default values are used:

Default: ‘ Value:

DEFAULT_AXIS_MARGIN 0.05 (5 percent).
DEFAULT_CATEGORY_MARGIN | 0.20 (20 percent).

24.8.4 Setting Axis Margins

To control the lower margin for the axis:

= public double getLowerMargin();
Returns the lower margin for the axis, as a percentage of the total axis length. The default
value is 0.05 (five percent).

= public void setLowerMargin(double margin);
Sets the lower margin for the axis and sends an AxisChangeEvent to all registered listeners. The
margin is a percentage of the axis length (for example, 0.05 for a five percent margin).

To control the upper margin for the axis:

= public double getUpperMargin();
Returns the upper margin for the axis, as a percentage of the total axis length. The default
value is 0.05 (five percent).

= public void setUpperMargin(double margin);
Sets the upper margin for the axis and sends an AxisChangeEvent to all registered listeners. The
margin is a percentage of the axis length (for example, 0.05 for a five percent margin).

To control the margin between categories:

= public double getCategoryMargin();

Returns the (total) margin between all categories, as a percentage of the total axis length. The
default value is 0.20 (that is, twenty percent of the axis length is allocated to the gaps between
categories).

= public void setCategoryMargin(double margin);

Sets the category margin for the axis and sends an AxisChangeEvent to all registered listeners.
The margin is a percentage of the axis length (for example, 0.20 for a twenty percent margin).
The overall margin is distributed over N-1 gaps where N is the number of categories displayed
on the axis.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 202

24.8.5 Category Labels

The labels displayed on the axis to represent each category are obtained directly from the dataset,
by calling the toString() method on the dataset’s column key (similarly, the series label displayed
in the legend is obtained by calling the toString() method on the row key).

There are many options available for positioning, aligning and rotating the category labels on the
axis—these options are described in more detail in the next section. Here, we simply describe the
technique for rotating the category labels by 90 degrees, which is a common requirement:

CategoryPlot plot = (CategoryPlot) chart.getPlot();
CategoryAxis axis = plot.getDomainAxis();

axis.setCategoryLabelPositions(CategoryLabelPositions.UP_90) ;

24.8.6 Category Label Positioning and Alignment

There are many options for controlling the positioning, alignment and rotation of category labels.
This provides a great deal of flexibility, but at the price of being somewhat complex.

By default, JEreeChart will display category labels on a single line, truncated if necessary. However,
multi-line labels are supported:

= public int getMaximumCategoryLabelLines();
Returns the current maximum number of lines for displaying category labels. The default value
is 1.

= public void setMaximumCategoryLabelLines(int lines);
Sets the maximum number of lines for displaying category labels and sends an AxisChangeEvent
to all registered listeners.

Line wrapping occurs when longer labels reach the maximum width allowed for category labels.
This maximum category label width is specified in a relative way, in the categoryLabelPosition class.
In addition, there is an override setting in this class:

= public float getMaximumCategoryLabelWidthRatio();

Returns the maximum category label width setting, which is expressed as a percentage of either
(a) the category label rectangle, or (b) the length of the range axis. The default value is 0.0,
which means this override setting is ignored.

= public void setMaximumCategoryLabelWidthRatio(float ratio);

Sets the maximum category label width, expressed as a percentage of (a) the category label
rectangle, or (b) the length of the range axis. This setting overrides the value specified in the
CategoryLabelPosition class (see below). After setting the value, an AxisChangeEvent is sent to
all registered listeners.

To control the offset between the axis and the category labels:

= public int getCategoryLabelPositionOffset();
Returns the offset (in Java2D units) between the axis and the category labels. The default
value is 4.

= public void setCategoryLabelPositionOffset(int offset);
Sets the offset, in Java2D units, between the axis and the category labels, then sends an
AxisChangeEvent to all registered listeners.

To control the position and rotation of the category labels:

= public CategoryLabelPositions getCategoryLabelPositions();
Returns an object containing the four CategoryLabelPosition instances that apply for each
possible location of the axis. This method never returns null.

= public void setCategoryLabelPositions(CategoryLabelPositions positions);
Sets the attribute that controls the position, alignment and rotation of the category labels
along the axis, then sends an AxisChangeEvent to all registered listeners.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 203

The CategoryLabelPositions class is just a structure containing four instances of the CategoryLabelPosition
class. When the axis needs to determine where it is going to draw the category labels, it will select

one of those instances depending on the current location of the axis (at the top, bottom, left or

right of the plot). It is the attributes of the CategoryLabelPosition object that ultimately determine

where the labels are drawn.

e the first attribute is an anchor point relative to a notional category rectangle that is computed
by the axis (see figure 24.4).Within this rectangle, an anchor point is specified using the
RectangleAnchor class.

Category Axis

o4
l
A F——" CATEGORY2 F———-1 CATEGORYN -

-@—— Category 1 Label Rectangle

Figure 24.4: A category label rectangle

e the second attribute is a text anchor, which defines a point on the category label which is
aligned with the anchor point on within the category rectangle mentioned previously. This
is specified using the TextBlockAnchor class. Try running the DrawStringDemo class in the
JCommon distribution to see how the anchor is used to align text to a point on the screen.

e two additional attributes define a rotation anchor point and a rotation angle. These are
applied once the label text has been positioned using the previous two attributes;

e a width ratio and width ratio type control the maximum width of the category labels.

24.8.7 Per Category Tick Label Settings

The category label font and paint settings are inherited from the Axis class. However, the CategoryAxis
class also provides the ability to override these settings on a per-category basis:

= public Font getTickLabelFont(Comparable category) ;
Returns the override font for the specified category, or null if there is no setting for that
category.

= public void setTickLabelFont(Comparable category, Font font);
Sets the override font for the specified category, and sends an AxisChangeEvent to all registered
listeners.

= public Paint getTickLabelPaint(Comparable category);
Returns the override paint for the specified category, or null if there is no setting for that
category.

= public void setTickLabelPaint(Comparable category, Paint paint);
Sets the override paint for the specified category, and sends an AxisChangeEvent to all registered
listeners.

24.8.8 Category Label Tool Tips

It is possible to specify tooltips for the labels along the category axis. This can be useful if you
want to use short category names, but have the opportunity to display a longer description. To
add a tool tip:

= public void addCategoryLabelToolTip(Comparable category, String tooltip);
Adds a tooltip for the specified category.

To remove a tool tip:

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 204

= public void removeCategoryLabelToolTip(Comparable category);
Removes the tooltip for the specified category.

To remove all tool tips:

= public void clearCategoryLabelToolTips();
Removes all category label tool tips.

This feature is not supported by other axis types yet.

24.8.9 Other Methods

To control whether or not a line is drawn for the axis:

= public void setAxisLineVisible(boolean visible);

Sets the flag that controls whether or not a line is drawn for the axis. Often, this isn’t required
because the CategoryPlot draws an outline around itself by default. However, sometimes the
plot will have no outline OR the axis may be offset from the plot.

The Java2D coordinates for the start, middle and end of the category along the axis are given by:

= public double getCategoryStart(int category, int categoryCount, Rectangle2D area,
RectangleEdge edge);

Returns the start of the specified category (in Java2D units), assuming the axis lies along the
specified edge of the given area.

= public double getCategoryMiddle(int category, int categoryCount, Rectangle2D area,
RectangleEdge edge);

Returns the middle of the specified category (in Java2D units), assuming the axis lies along
the specified edge of the given area.

= public double getCategoryEnd(int category, int categoryCount, Rectangle2D area,
RectangleEdge edge);

Returns the end of the specified category (in Java2D units), assuming the axis lies along the
specified edge of the given area.

= public double getCategoryMiddle(Comparable category, List categories,

Rectangle2D area, RectangleEdge edge); [1.0.11]

Returns the middle of the specified category (in Java2D units), assuming the axis lies along
the specified edge of the given area.

A new method has been added in version 1.0.13 that returns the middle of a series within a category,
but allowing the series count to be specified (so the caller can account for hidden series if necessary):

= public double getCategorySeriesMiddle(int categoryIndex, int categoryCount, int seriesIndex,
int seriesCount, double itemMargin, Rectangle2D area, RectangleEdge edge); [1.0.13]
Returns the Java2D coordinate for the middle of a series within a category.

24.8.10 Internals

In JFreeChart, axes are owned/managed by a plot. The plot is responsible for assigning drawing
space to all of the axes in a plot, which it does by first asking the axes to estimate the space they
require (primarily for the axis labels). The following method is used:

= public AxisSpace reserveSpace(Graphics2D g2, Plot plot,
Rectangle2D plotArea, RectangleEdge edge, AxisSpace space);
Updates the axis space to allow room for this axis to be drawn.

When reserving space, the axis needs to determine the tick marks along the axis, which it does via
the following method:

w public List refreshTicks(Graphics2D g2, AxisState state,
Rectangle2D plotArea, Rectangle2D dataArea, RectangleEdge edge);
Returns a list of the ticks along the axis.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 205

After the plot has estimated the space required for each axis, it then computes the “data area” and
draws all the axes around the edges of this area:

= public AxisState draw(Graphics2D g2, double cursor,

Rectangle2D plotArea, Rectangle2D dataArea, RectangleEdge edge);

Draws the axis along a specific edge of the data area. The cursor is a measure of how far from
the edge of the data area the axis should be drawn (another axis may have been drawn along
the same edge already, for example) and the plot area is the region inside which all the axes
should fit (it contains the data area).

For a given rectangular region in Java2D space, the axis can be used to calculate an x-coordinate or
a y-coordinate (depending on which edge of the rectangle the axis is aligned) for the start, middle
or end of a particular category on the axis:

= public double getCategoryJava2DCoordinate(CategoryAnchor anchor,
int category, int categoryCount, Rectangle2D area, RectangleEdge edge);
Returns the x- or y-coordinate (in Java2D space) of the specified category.

= protected double calculateCategorySize(int categoryCount, Rectangle2D area,
RectangleEdge edge);

Returns the width (in Java2D units) of one category assuming the axis lies along the specified
edge of the given area. The size is a function of the length of the edge along which the axis lies,
the number of categories, and the upper, lower and category margins specified for the axis.

= protected double calculateCategoryGapSize(int categoryCount, Rectangle2D area,
RectangleEdge edge);

Returns the width (in Java2D units) of the gap between categories, assuming the axis lies
along the specified edge of the given area. The gap size is a function of the length of the edge
along which the axis lies, the number of categories, and the upper, lower and category margins
specified for the axis.

To draw the category labels, JFreeChart calls the following method:
= protected AxisState drawCategoryLabels(Graphics2D g2, Rectangle2D plotArea,
Rectangle2D dataArea, RectangleEdge edge, AxisState state,
PlotRenderingInfo plotState); [1.0.2]
Draws the category labels.!

24.8.11 Cloning and Serialization

This class is Cloneable and Serializable.

24.8.12 Notes

Some points to note:
e tick marks are not supported by this axis (yet);

e the foreground paint can be set for tick labels, but not the background paint.

See Also
CategoryPlot, CategoryAxis3D.

24.9 CategoryAxis3D

24.9.1 Overview

An extension of the CategoryAxis class that adds a 3D effect. If you use a CategoryItemRenderer
that draws items with a 3D effect, then you need to ensure that you are using this class rather than
a regular CategoryAxis. Eventually, the aim is to combine this class into the CategoryAxis class.

IPrior to 1.0.2, a drawCategoryLabels() method without the dataArea argument was used.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 206

24.9.2 Constructors

There are two constructors:

= public CategoryAxis3DQ);
Creates a new axis with no label.

= public CategoryAxis3D(String label);
Creates a new axis with the specified label (null is permitted).

24.9.3 Methods
The 3D effect is implemented simply by overriding two key methods:

= public AxisState draw(Graphics2D g2, double cursor, Rectangle2D plotArea,

Rectangle2D dataArea, RectangleEdge edge, PlotRenderingInfo plotState);

Draws the axis with a 3D effect. The offsets for the 3D effect are obtained from the plot’s main
renderer.

= public double getCategoryJava2DCoordinate(CategoryAnchor anchor, int category,
int categoryCount, Rectangle2D area, RectangleEdge edge);
Returns the Java2D coordinate for the specified category, taking into account the 3D effect.

See Also
NumberAxis3D.

24.10 CategoryLabelPosition

24.10.1 Overview

This class records the attributes that control the positioning (including alignment and rotation) of
category labels along a CategoryAxis:

e the category anchor - a RectangleAnchor that is used to determine the point on the axis against
which the category label is aligned. This is specified relative to a rectangular area that the
CategoryAxis allocates for the category (see figure 24.4);

e the label anchor - a TextBlockAnchor that determines the point on the category label (a
TextBlock) that is aligned with the category anchor;

e the rotation anchor - the point on the category label about which the label is rotated (note
that there may be no rotation);

e the rotation angle - the angle of the rotation, specified in radians;

e the category label width type - controls whether the maximum width for the labels is relative
to the width of the category label rectangle (the default) or the length of the range axis (useful
when labels are rotated so that they are perpendicular to the category axis);

e the maximum category label width ratio, measured as a percentage of either the category
label rectangle or the length of the range axis (see the previous setting).

24.10.2 Usage

To customise the label positioning, alignment and rotation, you would typically create four instances
of this class (one for each of the possible axis locations) and use these to create a CategoryLabelPositions
object.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 207

24.10.3 Notes
The following points should be noted:

e instances of this class are immutable, a fact that is relied upon by code elsewhere in the
JFreeChart library.

24.11 CategoryLabelPositions

24.11.1 Overview

This class is used to specify the positions of category labels on a CategoryAxis. To account for the
fact that an axis can appear in one of four different locations (the top, bottom, left or right of the
plot) this class contains four instances of the CategoryLabelPosition class—the axis will choose the
appropriate one when the labels are being drawn.

Several static instances of this class have been predefined in order to simplify general usage of the
CategoryAxis class:

Value: Description:
STANDARD | The default label positions.
UP_90 The labels are rotated 90 degrees, with the text running from the bottom to

the top of the chart.

DOWN_90 The labels are rotated 90 degrees, with the text running from the top to the
bottom of the chart.

UP_45 The labels are rotated 45 degrees, with the text running towards the top of
the chart.

DOWN_45 The labels are rotated 45 degrees, with the text running towards the bottom
of the chart.

Table 24.4: Static instances of the CategoryLabelPositions class

24.11.2 Usage
For example, to change the category axis labels to a 45 degree angle:

CategoryAxis domainAxis = plot.getDomainAxis();
domainAxis.setCategoryLabelPositions(CategoryLabelPositions.UP_45);

The above example uses one of the predefined instances of this class. However, you can also
experiment with creating your own instance, to fully customise the category label positions.

24.12 CategoryLabelWidthType

24.12.1 Overview

This class defines tokens that are used to specify how the maximum category label width ratio—a
setting that limits the width of category labels relative to the size of the plot—is applied. See table
24.5 for the tokens that are defined.

24.12.2 Usage

This class is used for the creation of CategoryLabelPosition instances.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 208

1D: | Description:

CategoryLabelWidthType.CATEGORY | The maximum width is a percentage of the category
width (for example, 0.90 for 90 percent).

CategoryLabelWidthType.RANGE The maximum width is a percentage of the length of
the range axis (typically used when the labels are dis-
played perpendicular to the category axis).

Table 24.5: Tokens defined by CategoryLabelWidthType

24.12.3 Notes

Some points to note:

e the maximum category label width ratio is set using the setMaximumCategoryLabelWidth-
Ratio() method in the CategoryPlot class (or, if this is 0.0, the ratio is taken from the
CategoryLabelPosition instance);

e when a category label reaches its maximum width, it will wrap to another line (up to the
maximum number of lines allowed). If the full label cannot be displayed within the maximum
number of lines allowed, the label is truncated.

24.13 CategoryTick

24.13.1 Overview

A class used to represent a single tick on a CategoryAxis. This class is used internally and it is
unlikely that you should ever need to use it directly.

24.14 ColorBar

24.14.1 Overview

A color bar is used with a ContourPlot. This class is deprecated as of version 1.0.4.

24.15 CompassFormat

24.15.1 Overview

A custom NumberFormat class that can be used to display numerical values as compass directions—
see figure 24.5 for an example. In the example, the range axis on the left side of the chart displays
compass directions in place of numerical values.

24.15.2 Usage

There is a demo (CompassFormatDemol.java) included in the JFreeChart demo collection.

24.15.3 Methods

To convert an angle (in degrees) to a compass direction (for example, “NE”):

= public String getDirectionCode(double direction);

Returns the compass direction (as a String) that corresponds to the given direction (which is
expressed in degrees). The return value is one of: N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW,
WSW, W, WNW, NW, NNW.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 209

Time
N 12
11
NNW
10
NW 9
WNW 8
[=
2 7 o4
T ow 6 S
o o
= @
o wsw 5
4
sw ¢
(‘ 3
Ssw 2
1
S
0
12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00
Date
|7 Wind Direction a Wind Forcel

Figure 24.5: A chart that uses the CompassFormat class.

The following methods perform the required formatting, but are usually not called directly (see
Java’s NumberFormat class for more details):

= public StringBuffer format(double number, StringBuffer toAppendTo, FieldPosition pos);
Converts the given number to a string containing the corresponding direction.

= public StringBuffer format(long number, StringBuffer toAppendTo, FieldPosition pos);
Converts the given number to a string containing the corresponding direction.

Parsing is not supported:

= public Number parse(String source, ParsePosition parsePosition);
This method always returns null, which means this formatter cannot be used for parsing.

24.15.4 Notes
Some points to note:
e this class cannot be used for parsing numbers;

e a demo application (CompassFormatDemol.java) is included in the JFreeChart demo collection.

24.16 CyclicNumberAxis

24.16.1 Overview

An extension of the NumberAxis class that is used to generate cyclic plots.

24.16.2 Constructors

To create a new axis:

= public CyclicNumberAxis(double period);
Creates a new axis with the specified period and a zero offset. No label is set for the axis.

= public CyclicNumberAxis(double period, double offset);
Creates a new axis with the specified period and offset. No label is set for the axis.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 210

= public CyclicNumberAxis(double period, String label);
Creates a new axis with the specified period and axis label. The offset is zero.

w public CyclicNumberAxis(double period, double offset, String label);
Creates a new axis with the specified period, offset and label.

24.16.3 Methods

To control the visibility of the “advance line”:

= public boolean isAdvanceLineVisible();
Returns the flag that controls whether or not the advance line is displayed.

= public void setAdvanceLineVisible(boolean visible);
Sets the flag that controls whether or not the advance line is displayed.

= public Paint getAdvanceLinePaint();
Returns the paint used to draw the advance line (never null).

= public void setAdvancelLinePaint(Paint paint);
Sets the paint used to draw the advance line (null not permitted).

= public Stroke getAdvanceLineStroke();
Returns the stroke used to draw the advance line (never null).

= public void setAdvanceLineStroke(Stroke stroke);
Sets the stroke used to draw the advance line (null not permitted).

= public boolean isBoundMappedToLastCycle();
To be documented.

= public void setBoundMappedToLastCycle(boolean boundMappedToLastCycle) ;
To be documented.

24.17 DateAxis

24.17.1 Overview

An axis that displays date/time values—extends ValueAxis. This class is designed to be flexible
about the range of dates/times that it can display—anything from a few milliseconds to several
centuries can be handled.

A date axis can be used for the domain and/or range axis in an XYPlot. In a CategoryPlot, a date
axis can only be used for the range axis.

24.17.2 Usage

To change the attributes of the axis, you need to obtain a DateAxis reference—because of the way
JFreeChart is designed, this usually involves a “cast”:

XYPlot plot = (XYPlot) chart.getPlot();

ValueAxis domainAxis = plot.getDomainAxis();

if (domainAxis instanceof DateAxis) {
DateAxis axis = (DateAxis) domainAxis;
// customise axis here...

Given a DateAxis reference, you can change:
e the axis range, see section 24.17.5;
e the size and formatting of the tick labels, see section 24.17.7;

e other inherited attributes, see section 24.45.4.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 211

24.17.3 Constructors

The default constructor creates a new axis with no label:

= public DateAxis();
Creates a new date axis with no label.

You can specify the label using:

= public DateAxis(String label);
Creates a new axis with the specified label (null permitted, in which case no label is displayed
for the axis).

Sometimes it is useful to be able to specify the time zone used for the tick marks and labels on the
axis:

w public DateAxis(String label, TimeZone zone); [Deprecated, 1.0.11]
Creates a new date axis where the tick marks and labels are calculated for the specified time
zone. This constructor is now deprecated—use the constructor that specifies the locale also.

w public DateAxis(String label, TimeZone zone, Locale locale); [1.0.11]
Creates a new axis with the specified label, with default tick label formatting configured using
the specified time zone and locale.

24.17.4 Attributes
The following attributes are defined, in addition to those inherited from the ValueAxis class:

Attribute: Description:

dateFormatOwverride | A date formatter that, if set, overrides the format of the tick labels
displayed on the axis.

tick Unit Controls the size and formatting of the tick labels on the axis (an
instance of DateTickUnit).

minimumDate The minimum date/time visible on the axis.

mazimumDate The maximum date/time visible on the axis.

vertical TickLabels A flag that controls whether or not the tick labels on the axis are

displayed “vertically” (that is, rotated 90 degrees from horizontal).

Refer to section 24.45.3 for information about the attributes inherited by this class.

24.17.5 The Axis Range
The range of dates displayed by the axis is controlled with the following methods:

= public Date getMinimumDate();
Returns the earliest date along the axis range.

= public void setMinimumDate(Date date);
Sets the earliest date for the axis.

= public Date getMaximumDate();
Returns the latest date along the axis range.

= public void setMaximumDate(Date maximumDate) ;
Sets the latest date for the axis.

To set the axis range:?

= public void setRange(Range range);
Sets the range of values to be displayed by the axis and sends an AxisChangeEvent to all registered
listeners.

2Note that when you set the axis range in this way, the auto-range attribute is set to false. It is assumed that
by setting a range manually, you do not want that subsequently overridden by the auto-range calculation.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 212

= public void setRange(Range range, boolean turnOffAutoRange, boolean notify);

Sets the range of values to be displayed by the axis. The turn0OffAutoRange flag controls whether
the auto range calculation is disabled or not (usually you want to disable it) and the notify
flag controls whether or not an AxisChangeEvent is sent to all registered listeners.

= public void setRange(Date lower, Date upper);
Sets the range of values to be displayed by the axis.

= public void setRange(double lower, double upper);
Sets the range of values to be displayed by the axis and sends an AxisChangeEvent to all registered
listeners.

For example:

// start and end are instances of java.util.Date
axis.setRange(start, end);

24.17.6 Time Zone

To control the time zone for the axis (which affects the conversion of date values to string labels):

= public TimeZone getTimeZone(); [1.0.4]
Returns the time zone for the axis (normally specified in the constructor).

= public void setTimeZone(TimeZone zone); [1.0.4]
Sets the time zone for the axis and sends an AxisChangeEvent to all registered listeners.

24.17.7 Tick Units

The tick units on the date axis are controlled by a similar “auto tick unit selection” mechanism to
that used in the NumberAxis class. This mechanism relies on a collection of “standard” tick units
(stored in an instance of TickUnits). The axis will try to select the smallest tick unit that doesn’t
cause the tick labels to overlap.

If you want to specify a fixed tick size and format, you can use code similar to this:

// set the tick size to one week, with formatting...

DateFormat formatter = new SimpleDateFormat ("d-MMM-yyyy");
DateTickUnit unit = new DateTickUnit(DateTickUnit.DAY, 7, formatter);
axis.setTickUnit (unit);

Note that setting a tick unit manually in this way disables the “auto” tick unit selection mechanism.
You may find that the tick size you have requested results in overlapping labels.

If you just want to control the tick label format, one option is to specify an override format:

// specify an override format...
DateFormat formatter = new SimpleDateFormat("d-MMM");
axis.setDateFormatOverride(formatter);

This is a simple and effective approach in some situations, but has the limitation that the same
format is applied to all tick sizes.

A final approach to controlling the formatting of tick labels is to create your own TickUnits col-
lection. The collection can contain any number of DateTickUnit objects, and should be registered
with the axis as follows:

// supply a new tick unit collection...
axis.setStandardTickUnits(myCollection);

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 213

24.17.8 Tick Label Orientation
To control the orientation of the tick labels on the axis:

axis.setVerticalTickLabels(true);

This code survives from the early days of JFreeChart development when there were sep-
arate classes HorizontalDatedzis and VerticalDatedzis...it needs to be changed to be
more generic for azxes that could have either a horizontal or vertical orientation.

24.17.9 Timelines

This class uses a Timeline to provide an opportunity for the axis to map from Java time (measured
in milliseconds since 1 January 1970, 00:00:00 GMT), to some other time scale. The default time
line performs an “identity” mapping—that is, the millisecond values are not changed.

Use the following methods to change the time line:

= public Timeline getTimeline();
Returns the current time line.

= public void setTimeline(Timeline timeline);
Sets the time line and sends an AxisChangeEvent to all registered listeners.

24.17.10 Other Methods

You can specify a fixed tick unit for the axis:

= public DateTickUnit getTickUnit();
Returns the tick unit (possibly null, in which case a tick unit will be selected automatically.)

= public void setTickUnit(DateTickUnit unit);
Sets the fixed tick unit for the axis and sends an AxisChangeEvent to all registered listeners.

= public void setTickUnit(DateTickUnit unit, boolean notify,
boolean turnOffAutoSelection);

Sets the fixed tick unit for the axis.
You can specify an override formatter for the tick labels:

= public DateFormat getDateFormatOverride();
Returns the formatter for the tick labels. If this is non-null, it is used to override any other
formatter.

= public void setDateFormatOverride(DateFormat formatter)

Sets the formatter and sends an AxisChangeEvent to all registered listeners. You should be
careful using this method, it overrides the date formatting without consideration for the size
of the tick units. If you choose an inappropriate date format you will get bad axis labelling.

Tick marks and labels are displayed at regular intervals along the axis. You can control whether
the marks are positioned at the start, middle or end of the interval:

w public DateTickMarkPosition getTickMarkPosition();
Returns the position for the tick marks within each interval along the axis.

= public void setTickMarkPosition(DateTickMarkPosition position);
Sets the position for the tick marks within each interval along the axis and sends an AxisChangeEvent
to all registered listeners.

= public void configure();
Configures the axis which involves recalculating the axis range (if the autoRange flag is switched
on).

= public boolean isHiddenValue(long millis);
Returns true if the specified millisecond is hidden by the Timeline, and false otherwise.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 214

= public double valueToJava2D(double value, Rectangle2D area, RectangleEdge edge);
Converts a data value to Java2D coordinates, assuming that the axis lies along one edge of the
specified area.

= public double dateToJava2D(Date date, Rectangle2D area, RectangleEdge edge);
Converts a date to Java2D coordinates, assuming that the axis lies along one edge of the
specified area.

= public double java2DToValue(double java2DValue, Rectangle2D area, RectangleEdge edge);
Translates a Java2D coordinate into a data value.

= public Date calculateLowestVisibleTickValue(DateTickUnit unit);
Calculates the value of the first tick mark on the axis.

= public Date calculateHighestVisibleTickValue(DateTickUnit unit);
Calculates the value of the last tick mark on the axis.

w public List refreshTicks(Graphics2D g2, AxisState state, Rectangle2D plotArea, Rectangle2D
dataArea, RectangleEdge edge);

Returns a list of ticks for the axis. You can override this method to customise the list of
ticks displayed on the axis—see YieldCurveDemo. java in the JFreeChart demo collection for an
example.

= public AxisState draw(Graphics2D g2, double cursor, Rectangle2D plotArea,

Rectangle2D dataArea, RectangleEdge edge, PlotRenderingInfo plotState);

Draws the axis. Normally, this method is called by the plot that owns the axis—you shouldn’t
need to call this method yourself.

= public void zoomRange(double lowerPercent, double upperPercent);
Changes the axis range to simulate a “zoom” function.

24.17.11 Standard Ticks

When the axis is labelled, JFreeChart will select a tick interval and formatting combination from a
set of “standard” tick units. By default, these are created using the following methods:

= public static TickUnitSource createStandardDateTickUnits();
Creates a set of standard tick units for a date axis, using the default time zone and locale to
configure the formatting.

= public static TickUnitSource createStandardDateTickUnits(TimeZone zone, Locale locale);
[1.0.11]

Creates a set of standard tick units for a date axis, using the specified time zone and locale to
configure the formatting.

= public static TickUnitSource createStandardDateTickUnits(TimeZone zone); [Deprecated, 1.0.11]
Creates a set of standard tick units for a date axis. This constructor is now deprecated—use
the newer constructor that specifies a locale as well as a timezone.

Don’t be afraid to change the default TickUnitSource—the defaults can’t cover every possible re-
quirement. Use the setStandardTickUnits() methods to make the change.

24.17.12 Equals, Cloning and Serialization
This class overrides the equals() method:

= public boolean equals(Object obj);
Tests for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 215

24.17.13 Notes

Some points to note:

e although the axis displays dates for tick labels, at the lowest level it is still working with
double primitives obtained from the Number objects supplied by the plot’s dataset. The
values are interpreted as the number of milliseconds since 1 January 1970 (that is, the same
encoding used by java.util.Date).

e a DateAxis is typically used as the domain axis (or x-axis) in a chart, but it can also be
used as the range axis (or y-axis)—for example, see the EventFrequencyDemol. java application
included in the JFreeChart demo collection.

24.18 DateTickMarkPosition

24.18.1 Overview

A simple enumeration of the possible tick mark positions for a DateAxis. The positions are:
® DateTickMarkPosition.START;
® DateTickMarkPosition.MIDDLE;

® DateTickMarkPosition.END.

Use the setTickMarkPosition() method in the DateAxis class to change this setting.

24.19 DateTick

24.19.1 Overview

A class used to represent a single tick on a DateAxis.

24.19.2 Usage

This class is used internally and it is unlikely that you should ever need to use it directly.

24.19.3 Constructor

To create a new instance:

= public DateTick(Date date, String label, TextAnchor textAnchor,
TextAnchor rotationAnchor, double angle);
Creates a new tick representing the specified date.

24.19.4 General Methods
To get the date for this tick:

w public Date getDate();
Returns the date for this tick.

24.19.5 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this tick for equality with an arbitrary object.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 216

24.20 DateTickUnit

24.20.1 Overview

A date tick unit for use by subclasses of DateAxis (extends the TickUnit class). Each unit is specified
using a unit type and multiple (see the constructors).

24.20.2 Usage

There are two ways to make use of this class. The first is where you know the exact tick size that
you want for your axis. In this case, you create a new date tick unit then call the setTickUnit ()
method in the DateAxis class. For example, to set the tick unit size on the axis to one week:

XYPlot plot = (XYPlot) chart.getPlot();
ValueAxis axis = plot.getDomainAxis();
axis.setTickUnit (new DateTickUnit(DateTickUnitType.DAY, 7));

The second usage is to create a collection of tick units using the TickUnits class, and then allow
the DateAxis to automatically select an appropriate unit. See the setStandardTickUnits() method
for more details.

24.20.3 Constructors

To create a new date tick unit:

= public DateTickUnit(DateTickUnitType unitType, int multiple); [1.0.13]
Equivalent to DateTickUnit (unitType, multiple, DateFormat.getDateInstance(DateFormat.SHORT))—
see the next constructor.

= public DateTickUnit(DateTickUnitType unitType, int multiple, DateFormat formatter); [1.0.13]
Equivalent to DateTickUnit (unitType, multiple, unitType, multiple, formatter)—see the next
constructor.

= public DateTickUnit(DateTickUnitType unitType, int multiple, DateTickUnitType rollUnitType,
int rollMultiple, DateFormat formatter); [1.0.13]
Creates a new date tick unit with the specified unit size/type, multiple and formatter.

24.20.4 Methods
To get the units used to specify the tick size:

w public DateTickUnitType getUnitType(); [1.0.13]
Returns the units used to specify the tick size. See also the getMultiple() method.

= public int getMultiple();
Returns the number of units (of getUnitType()) for this tick unit.

When it comes to using Java’s Calendar class for date operations, it is necessary to convert the tick
unit type into a calendar field integer constant—the following method provides this:

= public int getCalendarField();
A utility method that returns the constant in Java’s Calendar class that corresponds to the
DateTickUnitType.

This class also specifies a roll unit for use in the segmented date axis (it specifies how far to roll
forward when looking for a segment that is on the axis):
= public DateTickUnitType getRollUnitType();

= public int getRollMultiple();

To format a date using the tick unit’s internal formatter:

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS

= public String dateToString(Date date);
Formats the date as a String.

= public String valueToString(double milliseconds);
Formats the specified millisecond value as a date string.

The following method is used for simple date addition:

= public Date addToDate(Date base, TimeZone zone); [1.0.6]
Creates a new date relative to base by adding an interval that is equal to the length of this tick
unit.

= public Date rollDate(Date base, TimeZone zone); [1.0.6]
Creates a new date relative to base by adding an interval that is equal to the length of the roll
unit.

24.20.5 Equals, Cloning and Serialization
This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this date tick unit for equality with an arbitrary object.

24.20.6 Deprecated Code

217

A set of integer constants was used to specify the unit size, but in version 1.0.13 these have been
replaced by the DateTickUnitType class. The old integer constants are given in the following table:

Time Unit: | Constant:

Year DateTickUnit.YEAR

Month DateTickUnit.MONTH

Day DateTickUnit.DAY

Hour DateTickUnit.HOUR

Minute DateTickUnit.MINUTE
Second DateTickUnit.SECOND
Millisecond DateTickUnit.MILLISECOND

Note that these constants are not the same as those defined by Java’s Calendar class.

A couple of older constructors that used integer constants for the unit size have been deprecated

as of JFreeChart version 1.0.13:

w public DateTickUnit(int unit, int count);
Creates a new tick unit with a default date formatter for the current locale.

= public DateTickUnit(int unit, int count, DateFormat formatter);
Creates a new date tick unit with the specified date formatter.

To get the units used to specify the tick size:

= public int getUnit();
Returns a constant representing the units used to specify the tick size. The constants are listed
in section 24.20.1. As of version 1.0.13, you should use the getUnitType() method instead.

To get the number of units:

= public int getCount();
Returns the number of units. As of version 1.0.13, you should use the getMultiple() method.

To calculate a date offset:

= public Date addToDate(Date base);
Creates a new Date that is calculated by adding this DateTickUnit to the base date. As of
version 1.0.6, you should use the addToDate(Date, TimeZone) method instead.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 218

24.20.7 Notes

This class is immutable, a requirement for all subclasses of TickUnit.

See Also

NumberTickUnit.

24.21 DateTickUnitType

24.21.1 Overview
This class is used to represent the possible types for a DateTickUnit:
® DateTickUnitType.YEAR;
® DateTickUnitType.MONTH;
® DateTickUnitType.DAY;
® DateTickUnitType.HOUR;
® DateTickUnitType.MINUTE;
® DateTickUnitType.SECOND;
® DateTickUnitType.MILLISECOND;

This class was first introduced in JFreeChart version 1.0.13.

24.22 ExtendedCategoryAxis

24.22.1 Overview

An extension of the CategoryAxis class that allows sublabels to be displayed with the categories.

24.22.2 Notes

Some points to note:

e a couple of demos (SurveyResultsDemo2.java and SurveyResultsDemo3.java) are included in
the JFreeChart demo collection.

24.23 LogAxis

24.23.1 Overview

An axis that displays a logarithmic scale. This class was first introduced in JFreeChart version
1.0.7.

24.23.2 Constructors

To create a new axis instance:

= public LogAxis(); [1.0.7]
Equivalent to LogAxis(null)—see the next constructor.

= public LogAxis(String label); [1.0.7]
Creates a new axis with the specified label. If label is null, the axis will be drawn without a
label.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 219

24.23.3 General Attributes

To control the base of the logarithm calculation used by the axis:

= public double getBase(); [1.0.7]
Returns the base for the logarithm calculation. The default value is 10.0.

= public void setBase(double base); [1.0.7]
Sets the base for the logarithm calculation, and sends an AxisChangeEvent to all registered
listeners. If base is less than or equal to 1.0, this method throws an IllegalArgumentException.

This axis can only display positive values. The smallest positive value that will be displayed on the
axis is controlled by:

= public double getSmallestValue(); [1.0.7]
Returns the smallest (positive) value that will be displayed on the axis. The default value is
1E-100.

= public void setSmallestValue(double value); [1.0.7]

Sets the smallest value that will be displayed on the axis, and sends an AxisChangeEvent
to all registered listeners. If value is less than or equal to 0.0, this method throws an
IllegalArgumentException.

To control the tick unit for the axis:

= public NumberTickUnit getTickUnit(); [1.0.7]
Returns the current tick unit for the axis.

= public void setTickUnit(NumberTickUnit unit); [1.0.7]
Equivalent to setTickUnit(unit, true, true)—see the next method.

= public void setTickUnit(NumberTickUnit unit, boolean notify, boolean turnOffAutoSelect);
[1.0.7]
Sets the current tick unit and, if requested, sends an AxisChangeEvent to all registered listeners.

= public NumberFormat getNumberFormatOverride(); [1.0.7]
Returns the override formatter for the tick labels on the axis. The default value is null.

= public void setNumberFormatOverride(NumberFormat formatter); [1.0.7]
Sets the override formatter (null is permitetd) for the tick labels on the axis, and sends an
AxisChangeEvent to all registered listeners.

To control the number of minor tick marks shown between each major tick mark:

w public int getMinorTickCount(); [1.0.7]
Returns the minor tick count. The default value is 10.

w public void setMinorTickCount(int count); [1.0.7]
Sets the minor tick count and sends an AxisChangeEvent to all registered listeners.

24.23.4 Other Methods

This class provides a number of methods that are typically called by JFreeChart rather than by
user code.

= public double calculateLog(double value); [1.0.7]
Returns x, where value = Math.pow(base, x).

= public double calculateValue(double log); [1.0.7]
Returns y, where y = Math.pow(base, log).

To convert from data-space to Java2D-space and back again:

= public double java2DToValue(double java2DValue, Rectangle2D area, RectangleEdge edge); [1.0.7]
Converts a Java2D coordinate into data-space, assuming the axis lies along the specified edge
of the given area.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 220

= public double valueToJava2D(double value, Rectangle2D area, RectangleEdge edge); [1.0.7]
Converts a data value into Java2D space, assuming the axis lies along the specified edge of the
given area.

There are a couple of methods related to the auto-range calculation:

= public void configure(); [1.0.7]
Updates the axis bounds if the autoRange flag is set. This method is usually called when an
axis is first assigned to a plot.

= protected void autoAdjustRange(); [1.0.7]
Updates the axis bounds to match the available data.

To draw the axis:

= public AxisState draw(Graphics2D g2, double cursor, Rectangle2D plotArea,
Rectangle2D dataArea, RectangleEdge edge, PlotRenderingInfo plotState); [1.0.7]
Draws ths axis along one edge of the specified dataArea.

Some methods relating to the tick units on the axis:

= public List refreshTicks(Graphics2D g2, AxisState state, Rectangle2D dataArea,
RectangleEdge edge); [1.0.7]
Returns a list of tick marks and labels for the axis.

= protected void selectAutoTickUnit(Graphics2D g2, Rectangle2D dataArea,

RectangleEdge edge); [1.0.7]

Selects a tick unit from the current TickUnitSource in such a way that the tick labels will not
overlap.

= public double exponentLengthToJava2D(double length, Rectangle2D area,
RectangleEdge edge); [1.0.7]
Returns the length, in Java2D units, of a value given in the linear scale for the axis.

= public static TickUnitSource createLogTickUnits(Locale locale); [1.0.7]
Creates a default set of tick units for the axis.

The following method is overridden to support zooming;:

= public void zoomRange(double lowerPercent, double upperPercent); [1.0.7]
Adjusts the axis range to show the interval specified.
24.23.5 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj); [1.0.7]
Tests this axis for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

24.23.6 Notes

A demo (LogAxisDemol.java) is included in the JFreeChart demo collection.

See Also:

LogarithmicAxis.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 221

24.24 LogarithmicAxis

24.24.1 Overview

A numerical axis that displays values using a logarithmic scale (with base 10). This class extends
NumberAxis and can be used anywhere that a NumberAxis can be used, including:

e as the range axis on a CategoryPlot;
e as the domain and/or range axis on an XYPlot;

e as the range axis on a ThermometerPlot.

Note: This class has some quirks and isn’t quite as flexible as it could be. There’s now an alternative
axis that you might want to try—LogAzis.

24.24.2 Constructors

This class has a single constructor:

= public LogarithmicAxis(String label);

Creates a new axis with the specified label. If the label is null, the axis is displayed without a
label. The default tick label format for the axis will be regular numeric labels, rather than the
scientific or power notations.

24.24.3 The Axis Range

By default, the axis range is automatically calculated to match the range of values plotted against
the axis. If you prefer to set the axis range manually, the following method will do this:

= public void setRange(Range range);
Sets the bounds of the axis to the given range.

Once a range has been manually set, changes to the dataset do not alter the axis range. You can
restore the automatic range calculation using:

axis.setAutoRange(true);
A flag is used to control whether the automatically calculated range is expanded to include the next
“power of ten” value:

= public boolean getAutoRangeNextLogFlag() ;
Returns true if the next power of ten is included in the automatic range, and false otherwise.

= public void setAutoRangeNextLogFlag(boolean flag);
Sets the flag that controls whether the next “power of ten” is included in the automatic range
calculation. The default value is false.

The following method updates the axis bounds according to the values in the dataset (it is usually
called by JFreeChart, you shouldn’t need to call this method directly):

= public void autoAdjustRange();
Updates the axis bounds to reflect the range of values in the dataset.

24.24.4 Negative Values

A logarithmic axis can only display positive values. However, the JFreeChart implementation
provides an option to allow negative values to be plotted on a logarithmic scale.

= public boolean getAllowNegativesFlag();
Returns true if the axis is configured to display negative values, and false otherwise.

= public void setAllowNegativesFlag(boolean flgVal);
Sets the flag that controls whether or not the axis will display negative values.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 222

The strictValues flag controls whether or not a RuntimeException is thrown when a negative value
is encountered and the allowNegativeValues flag is false. Note: setting this flag to false appears to
be equivalent to setting the allowNegativesFlag to true.

= public boolean getStrictValuesFlag();
Returns the value of the strictValuesFlag.

= public void setStrictValuesFlag(boolean flgVal);
Sets the flag that controls whether or not a RuntimeException is thrown when the allowNegativesFlag
is false and a negative value is encountered.

24.24.5 Tick Label Formatting
The axis can display tick labels in several formats:
e as a regular number (the default);
e in the form 107x;
e using scientific notation (for example, 1E8 which is 1 x 1078).

The logl10TickLabelsFlag flag controls the selection of the “10~x” format:

= public boolean getLoglOTickLabelsFlag();
Returns true if the tick labels are displayed in the form “10-x”, and false otherwise.

= public void setLoglOTickLabelsFlag(boolean flag);
Sets the flag that controls whether the tick labels are displayed in the form “10~x”. This flag
takes precedence over the expTickLabelsFlag flag.

The expTickLabelsFlag flag controls the selection of the scientific format:

= public boolean getExpTickLabelsFlag();
Returns true if the tick labels are displayed using scientific notation (for example, 1E2, which
is equivalent to 1 x 10~2), and false otherwise.

= public void setExpTickLabelsFlag(boolean flgVal);
Sets a flag that controls whether the tick labels are displayed in scientific notation. This flag
is ignored if the log10TickLabelsFlag is true.

24.24.6 Other Methods

The remaining methods in this class are used to convert data values to Java2D coordinates and
vice-versa:

= public double valueToJava2D(double value, Rectangle2D plotArea, RectangleEdge edge);
Converts value to a Java2D coordinate along the edge of the given PlotArea.

= public double java2DToValue(double java2DValue, Rectangle2D plotArea, RectangleEdge edge);
Converts java2DValue to an axis value.

= public double adjustedLoglO(double val);
To be documented.

24.24.7 Notes

An alternative to this class is the LogAxis class.

24.25 MarkerAxisBand

24.25.1 Overview

A band that can be added to a NumberAxis to highlight certain value ranges. NOTE: this facility is
broken at present, so this class should not be used.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 223

24.26 ModuloAxis

24.26.1 Overview

This axis is a special extension of NumberAxis that presents a fixed range of values in a “circular”
or “cyclic” fashion. It was originally developed to display directional measurements (that is, values
in the range 0 to 360 degrees), but should be general enough to be applied for other uses. The
CompassFormatDemo2 application (included in the JFreeChart demo collection) provides one example
of this axis in use—see figure 24.6.

180 [, - 360 Time
170 =0
160
150 300
140 270
130
120 240 o .
110 210 T 5
100 2 =
20 180 5
80 150
i 120
Er 60
50 90
gg 60 14:200 14:30 1440 14:50 1500 1510 15:20 15:30 1540
Date
20 30
1 Vo

Figure 24.6: A chart that uses a ModuloAzis

24.26.2 Constructor

There is a single constructor:

= public ModuloAxis(String label, Range fixedRange);
Creates a new axis with the specified 1abel and fixedRange.

24.26.3 The Display Range

The display range is the subset (of the fixed range) that is currently displayed by the axis. It is
defined by a start value and an end value. It is possible for the start value to be greater than the
end value—in this case, the displayed range is formed from two parts: (1) the start value to the
upper bound of the fixed range, and (2) the lower bound of the fixed range to the end value.

To find the current display range:

= public double getDisplayStart();
Returns the start value of the range being displayed by the axis. This value will always fall
within the fixed range specified in the constructor.

= public double getDisplayEnd();
Returns the end value of the range being displayed by the axis. This value will always fall
within the fixed range specified in the constructor.

To set the display range:

= public void setDisplayRange(double start, double end);

Sets the display range for the axis. If either start or end fall outside the fixed range specified in
the constructor, they will first be mapped to the fixed range (using a modulo-like calculation).
It is possible for start to be greater than end—in this case, the displayed range is formed from
two parts: (1) the start value to the upper bound of the fixed range, and (2) the lower bound
of the fixed range to the end value.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 224

24.26.4 Other Methods

Other methods defined for this class are mainly for internal use:

= public double valueToJava2D(double value, Rectangle2D area, RectangleEdge edge);
Converts a data value to a Java2D coordinate, assuming that the axis lies along the specified
edge of the given area. This method overrides the method provided by NumberAxis to account
for the fact that the display range may be in two pieces.

= public double java2DToValue(double java2DValue, Rectangle2D area, RectangleEdge edge);
Converts a Java2D coordinate into a data value, assuming that the axis lies along the specified
edge of the given area. This method overrides the method provided by NumberAxis to account
for the fact that the display range may be in two pieces.

= public void resizeRange(double percent);
Resizes the display range, about its central value, by the specified percentage (values less that
1.0 or 100% will shrink the range, while values greater than 1.0 will expand the range).

= public void resizeRange(double percent, double anchorValue);
Resizes the display range by the specified percentage about the anchorValue. Percentage values
less that 1.0 or 100% will shrink the range, while values greater than 1.0 will expand the range).

= public double lengthToJava2D(double length, Rectangle2D area, RectangleEdge edge);
Converts a length (specified in data space) into Java2D units. This method overrides the
method specified in NumberAxis to account for the fact that the displayed range on the axis may
be in two pieces.

24.27 MonthDateFormat

24.27.1 Overview

A custom date formatter that displays the month and, optionally, the year. This formatter is
typically used with the Periodaxis class. An example of the sequence of date strings that can be
generated with this formatter is:

Jan06 Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Notice how the first month has the year appended to it (this is configurable for every month).

24.27.2 Constructors

There are a range of constructors that allow you to configure the formatter as appropriate:

= public MonthDateFormat();
Creates a new formatter for the default time zone. This is equivalent to:

new MonthDateFormat (TimeZone.getDefault ());

= public MonthDateFormat(TimeZone zone);
Creates a new formatter for the given time zone. This is equivalent to:

new MonthDateFormat (zone, Locale.getDefault(), 1, true, false);

This means that months are labelled with a single letter, and a two-digit year indicator is added
to January only.

= public MonthDateFormat(TimeZone zone, int chars);
Creates a new formatter for the given time zone, with the specified number of characters for
each month. This is equivalent to:

new MonthDateFormat (zone, Locale.getDefault(), chars, true, false);
A two-digit year indicator is added to January only.

= public MonthDateFormat(Locale locale);
Creates a new formatter for the given locale. This is equivalent to:

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 225

new MonthDateFormat (TimeZone.getDefault(), locale, 1, true, false);

This means that months are labelled with a single letter, and a two-digit year indicator is added
to January only.

= public MonthDateFormat(Locale locale, int chars);
Creates a new formatter for the given locale, with the specified number of characters for each
month. This is equivalent to:

new MonthDateFormat (TimeZone.getDefault(), locale, chars, true, false);
A two-digit year indicator is added to January only.

= public MonthDateFormat(TimeZone zone, Locale locale, int chars, boolean showYearForJan,
boolean showYearForDec);

Creates a new formatter for the given time zone and locale. The chars argument specifies the
number of characters to display for each month name. The remaining flags control whether or
not the year is displayed for the months January and December (the year is NOT displayed for
the other months). The year is formatted using new SimpleDateFormat("yy").

The remaining constructor allows every attribute to be customised:

= public MonthDateFormat(TimeZone zone, Locale locale, int chars, boolean[] showYear,
DateFormat yearFormatter);

Creates a new formatter for the given time zone and locale. The time zone determines which
month a given date falls into, while the locale determines the labels used for the months.
The chars argument specifies the number of characters to display for each month name. The
showYear array should contain 12 flags that determine whether the year is appended to each
month label (sometimes you will want the year appended to every month, sometimes you may
just want the first month (January) of each year to have the year displayed. The final argument
controls the formatting of the year.

24.27.3 Methods

The following methods from DateFormat are required to be overridden—you won’t normally call
these methods directly:

= public StringBuffer format(Date date, StringBuffer toAppendTo,
FieldPosition fieldPosition);

Formats the given date.

= public Date parse(String source, ParsePosition pos);
This method returns null always, which means this formatter cannot be used to parse text into
dates.

This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this formatter for equality with an arbitrary object.

24.28 NumberAxis

24.28.1 Overview

An axis that displays numerical data along a linear scale. This class extends ValueAxis. You can
create your own subclasses if you have special requirements.

24.28.2 Usage

A NumberAxis can be used for:

e the range axis in a CategoryPlot.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 226

e the domain and/or range axes in an XYPlot;

The methods for obtaining a reference to the axis typically return a ValueAxis, so you will need
to “cast” the reference to a NumberAxis before using any of the methods specific to this class. For
example:

ValueAxis rangeAxis = plot.getRangeAxis();

if (rangeAxis instanceof NumberAxis) {
NumberAxis axis = (NumberAxis) rangeAxis;
axis.setAutoRangeIncludesZero(true);

}

This casting technique is used often in JFreeChart.?

24.28.3 Constructors

To create a new axis:

w public NumberAxis();
Creates a new axis with no label.

= public NumberAxis(String label);
Creates a new axis with the specified label. If label is null, the axis will be displayed without
a label.

24.28.4 Attributes

The following table lists the properties maintained by NumberAxis, in addition to those inherited
from ValueAxis.

Attribute: Description:

range Type Defines the permitted range for the axis: RangeType.FULL,
RangeType .POSITIVE and RangeType.NEGATIVE.
autoRangelncludesZero | A flag that indicates whether or not zero is always included when the
axis range is determined automatically.

autoRangeStickyZero A flag that controls the behaviour of the auto-range calculation when
zero falls within the lower or upper margin for the axis. If true, the
margin will be truncated at zero.

numberFormatOverride | A NumberFormat that, if set, overrides the formatting of the tick labels
for the axis.

vertical TickLabels A flag that indicates whether or not the tick labels are rotated to
vertical.

markerBand An optional band that highlights ranges along the axis (see
MarkerAxisBand).

The following default values are used for attributes wherever necessary:

Name: ‘ Value:

DEFAULT _MINIMUM_AXIS_VALUE 0.0

DEFAULT MAXIMUM_AXIS_VALUE 1.0

DEFAULT _MINIMUM_AUTO_RANGE new Double(0.0000001);

DEFAULT_TICK_UNIT new NumberTickUnit(new Double(1.0), new
DecimalFormat ("0"));

24.28.5 The Axis Range

You can control most aspects of the axis range using methods inherited from the ValueAxis class—
see section 24.45.5 for details. Some additional controls are added by this class.

To restrict the axis to display only positive values, or only negative values, you can set the rangeType
attribute:

3If you are sure of what you are doing, you can drop the instanceof check.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 227

= public RangeType getRangeType() ;
Returns the range type (never null).

= public void setRangeType(RangeType rangeType) ;
Sets the range type and sends an AxisChangeEvent to all registered listeners.

If you have set the autoRange flag to true (so that the axis range automatically adjusts to fit the
current data), you may also want to set the autoRangeIncludesZero flag to ensure that the axis
range always includes zero:

= public boolean getAutoRangeIncludesZero();
Returns true if the auto-range calculation ensures that zero is included in the range, and false
otherwise.

= public void setAutoRangeIncludesZero(boolean flag) ;

Sets the autoRangeIncludesZero flag and sends an AxisChangeEvent to all registered listeners.
Note that some renderers (for example, BarRenderer) have a flag to control the inclusion of
some “base” value in the axis range—since the base value often defaults to zero, you may need
to set the flag in the renderer also, to get the required range for the axis.

If the autoRangeIncludesZero flag is set to true, then you can further control how the axis margin
is calculated when zero falls within the axis margin. By setting the autoRangeStickyZero flag to
true you can truncate the margin at zero:

= public boolean getAutoRangeStickyZero();
Returns true if the axis margin should be truncated at zero if the zero value falls within the
margin.

= public void setAutoRangeStickyZero(boolean flag);
Sets the flag that controls whether or not the axis margin is truncated if the zero value falls
within the margin. An AxisChangeEvent is sent to all registered listeners.

24.28.6 Auto Tick Unit Selection

The NumberAxis class contains a mechanism for automatically selecting a tick unit from a collection
of “standard” tick units. The aim is to display as many ticks as possible, without the tick labels
overlapping. The appropriate tick unit will depend on the axis range (which is often a function of
the available data) and the amount of space available for displaying the chart.

The default standard tick unit collection contains about 50 tick units ranging in size from 0.0000001
to 1,000,000,000. The collection is created and returned by the createStandardTickUnits () method.

You can replace the default collection with any other collection of tick units you care to create.
One common situation where this is necessary is the case where your data consists of integer values
only. In this case, you only want the axis to display integer tick values, but sometimes the axis
will show values like 0.00, 2.50, 5.00. 7.50, 10.00, when you might prefer 0, 2, 4, 6, 8, 10. For this
situation, a set of standard integer tick units has been created. Use the following code:

NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
TickUnits units = NumberAxis.createIntegerTickUnits();
rangeAxis.setStandardTickUnits (units);

For greater control over the tick sizes or formatting, create your own TickUnits object.

24.28.7 Specifying a Formatting Override
For convenience, you can supply a NumberFormat instance as an override for the tick label formatting.

= public NumberFormat getNumberFormatOverride();
Returns the override formatter for the tick labels on the axis. The default value is null (no
override).

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 228

= public void setNumberFormatOverride (NumberFormat formatter);
Sets the override formatter for the tick labels on the axis and sends an AxisChangeEvent to all
registered listeners. You can set this to null to revert to using the standard formatters.

For example, to format the tick labels along the axis as percentages, you could use the following:

NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setNumberFormatOverride (new DecimalFormat (0.00%));

24.28.8 Methods

When the auto-tick-unit-selection flag is set to true, the axis will select a tick unit from a set of
standard tick units. You can define your own standard tick units for an axis with the following
method:

= public void setStandardTickUnits(TickUnits units);
Sets the standard tick units for the axis.

You don’t have to use the auto tick units mechanism. To specify a fixed tick size (and format):

= public void setTickUnit(NumberTickUnit unit);
Sets a fixed tick unit for the axis. This allows you to control the size and format of the ticks,
but you need to be sure to choose a tick size that doesn’t cause the tick labels to overlap.

= public void setTickUnit(NumberTickUnit unit, boolean notify, boolean turnOffAutoSelect);
Sets the current tick unit for the axis and, if notify is true, sends an AxisChangeEvent to all
registered listeners. If turnOffAutoSelect is true, this method sets autoTickUnitSelection to

false.

= public NumberTickUnit getTickUnit();
Returns the current tick unit for the axis. This controls the spacing between tick marks along
the axis, and also the format of the tick labels.

The following methods provide access to marker bands for the axis (these are currently broken, so
you should not use these methods):

= public MarkerAxisBand getMarkerBand();
Returns the marker band for the axis, or null if no band is installed.

= public void setMarkerBand(MarkerAxisBand band) ;
Sets the marker band for the axis and sends an AxisChangeEvent to all registered listeners.

24.28.9 Coordinate Translation

A core function of the axis is to translate values between data space (axis coordinates) and Java2D
space (for rendering on the screen or some other output target). This is handled via the following
methods:

= public double valueToJava2D(double value, Rectangle2D area, RectangleEdge edge);

Translates a value along the axis scale to a value in Java2D space, assuming that the axis runs
along the specified edge of the given area.

= public double java2DToValue(double java2DValue, Rectangle2D area, RectangleEdge edge);
Tranlates a Java2D coordinate to a value on the axis scale, assuming that the axis runs along
the specified edge of the given area.

24.28.10 Other Methods

The remaining methods are typically used by other JFreeChart components—you won’t normally
call these methods yourself:

= public void configure();
Reconfigures the axis—this updates the axis range if the auto-range calculation flag is set.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 229

= public List refreshTicks(Graphics2D g2, AxisState state, Rectangle2D dataArea,
RectangleEdge edge);

Creates and returns a list of ticks for display along the axis. This list is refreshed every time
the axis is drawn. You can override this method to take full control of the values along the
axis that will display tick labels.

w public AxisState draw(Graphics2D g2, double cursor, Rectangle2D plotArea,
Rectangle2D dataArea, RectangleEdge edge, PlotRenderingInfo plotState);
Draws the axis alogn the given edge of the specified dataArea.

24.28.11 Standard Tick Units

= public static TickUnitSource createStandardTickUnits();
Returns a collection of standard sizes (and label formats) for the ticks along the axis.

w public static TickUnitSource createStandardTickUnits(Locale locale);
As for the previous method, except the standard number format for the given locale is used to
format the tick labels.

= public static TickUnitSource createIntegerTickUnits();
Returns a collection of (integer-only) standard sizes (and associated label formats) for the ticks
along the axis.

= public static TickUnitSource createIntegerTickUnits(Locale locale);
As for the previous method, except the standard integer format for the given locale is used to
format the tick labels.

24.28.12 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this axis for equality with an arbitrary object.

= public int hashCode();
Returns a hash code for the axis.

24.28.13 Notes

Some points to note:

e you can reverse the direction of the values on the axis by calling setInverted(true)—this
method is inherited from the ValueAxis class;

e this class defines a default set of standard tick units. You can override the default settings by
calling the setStandardTickUnits() method.

See Also

ValueAxis, TickUnits.

24.29 NumberAxis3D

24.29.1 Overview

An extension of the NumberAxis class that adds a 3D effect. The offset for the 3D effect is obtained
from the plot’s main renderer, assuming that it implements the Effect3D interface.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 230

24.29.2 Constructors

There are two constructors:

w public NumberAxis3D();
Creates a new axis with no label.

= public NumberAxis3D(String label);
Creates a new axis with the specified label (null is permitted).

24.29.3 Methods
The 3D effect is implemented by overriding the drawing method:

= public AxisState draw(Graphics2D g2, double cursor, Rectangle2D plotArea,

Rectangle2D dataArea, RectangleEdge edge, PlotRenderingInfo plotState);

Draws the axis with a 3D effect (the offsets for the 3D effect are obtained from the plot’s main
renderer).

24.29.4 Notes
Ideally, this class will be combined with the NumberAxis class.

See Also
CategoryAxis3D.

24.30 NumberTick

24.30.1 Overview

A class used to represent a single tick on a NumberAxis.

24.30.2 Usage

This class is used internally and it is unlikely that you should ever need to use it directly.

24.30.3 Constructors

To create a new instance:

= public NumberTick(Number number, String label, TextAnchor textAnchor,
TextAnchor rotationAnchor, double angle);
Creates a new instance.

= public NumberTick(TickType tickType, double value, String label, TextAnchor textAnchor,
TextAnchor rotationAnchor, double angle); [1.0.7]
Creates a new instance with the specified type.*

24.30.4 Methods

In addition to the methods inherited from ValueTick, this class defines the following method:

= public Number getNumber();
Returns the numerical value associated with this tick.

4For now, the tick type is used to support major and minor tick marks in the LogAxis class.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 231

24.30.5 Notes

Instances of this class are created on-the-fly during the chart rendering process—they’re never used
to represent a chart structure, so there’s no need to support cloning and serialization (although it
probably wouldn’t hurt to add this).

See Also:
ValueTick

24.31 NumberTickUnit

24.31.1 Overview

A number tick unit for use by subclasses of NumberAxis (extends the TickUnit class).

24.31.2 Usage

There are two ways that this class is typically used.

The first is where you know the exact tick size that you want for an axis. In this case, you create
a new tick unit then call the setTickUnit () method in the ValueAxis class. For example:

XYPlot plot = (XYPlot) chart.getPlot();
ValueAxis axis = plot.getRangeAxis();
axis.setTickUnit(new NumberTickUnit(25.0));

The second is where you prefer to leave the axis to automatically select a tick unit. In this case,
you should create a collection of tick units (see the TickUnits class for details).

24.31.3 Constructors

To create a new number tick unit:

= public NumberTickUnit(double size);
Creates a new number tick unit with a default number formatter for the current locale.

Alternatively, you can supply your own number formatter:

= public NumberTickUnit(double size, NumberFormat formatter);
Creates a new number tick unit with the specified number formatter.

= public NumberTickUnit(double size, NumberFormat formatter, int minorTickCount) ;
Creates a new number tick unit with the specified number formatter and minor tick count.

24.31.4 Methods

To format a value using the tick unit’s internal formatter:

= public String valueToString(double value);
Formats the value as a String using the internal number formatter. This method is usually
called by code in one of the axis classes (for example, NumberAxis).

24.31.5 Equals, Cloning and Serialization

To test this object for equality:

= public boolean equals(Object obj);
Tests this object for equality with an arbitrary object. If obj is null, this method returns false.

Instances of this class are immutable, so the class does not implement Cloneable. The class is
Serializable.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS

24.31.6 Notes

This class is immutable, a requirement for all subclasses of TickUnit.

See Also

DateTickUnit.

24.32 PeriodAxis
24.32.1 Overview
A date/time axis with the following features:

e supports multiple label bands, where each band is divided up into time periods;
e automatic range calculation based on (whole unit) time periods;

e a user specified time zone;

232

See figure 24.7 for an example. You can use this axis in place of a DateAxis, it does a similar job

but with a slightly different set of features.

Legal & General Unit Trust Prices

180

170

160

150

140

Price Per Unit

130

120

110

100

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul
2001 | 2002
Date

|+ L&G European Index Trust -®- L&G UK Index Trust

Figure 24.7: A chart that uses a PeriodAzis (see PerioddzisDemol.java)

24.32.2 Constructors

To create a new axis:

= public PeriodAxis(String label,
RegularTimePeriod first, RegularTimePeriod last);
Creates a new axis—calls the next constructor, passing it the default time zone.

= public PeriodAxis(String label,
RegularTimePeriod first, RegularTimePeriod last, TimeZone timeZone);

Creates a new axis that displays data from the first to the last time periods. All time periods

are evaluated within the specified timeZone.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 233

24.32.3 The Axis Range

The axis range is defined by two time periods:

= public RegularTimePeriod getFirst();
Returns the time period that defines the start of the range of values displayed by the axis.

= public RegularTimePeriod getLast();
Returns the time period that defines the end of the range of values displayed by the axis.

Alternatively, you can get the range (bounds specified in milliseconds):
w public Range getRange();
Returns the current axis range. The lower bound of the range is set to the first millisecond of
the first time period, and the upper bound of the range is set to the last millisecond of the last

time period. The time zone is taken into account when pegging the first and last time periods
to the millisecond time line.

The axis range can be specified manually or automatically calculated by JFreeChart to “fit” the
available data values. To specify a manual range, use the following methods:

= public void setFirst(RegularTimePeriod first);
Sets the time period that defines the start of the range of values displayed by the axis, and
sends an AxisChangeEvent to all registered listeners.

= public void setLast(RegularTimePeriod last);
Sets the time period that defines the end of the range of values displayed by the axis, and sends
an AxisChangeEvent to all registered listeners.

To have the axis range calculated automatically, use the setAutoRange () method inherited from the
ValueAxis class. In addition, you may want to specify the time period class used by the auto-range
calculation—the axis range will always include a whole number of time periods of the class specified:

= public Class getAutoRangeTimePeriodClass();
Returns the time period class used when the axis range is calculated automatically.

= public void setAutoRangeTimePeriodClass(Class c);

Sets the time period class used when the axis range is calculated automatically. The axis range
will always be a whole number of periods. Valid classes include: Year.class, Quarter.class,
Month.class, Week.class, Day.class, Hour.class. Minute.class, Second.class and Millisecond.class.

24.32.4 Axis Labelling

The axis supports one or more “bands” of labels, where each band is represented by an instance of
PeriodAxisLabelInfo. Use the following methods to get/set the band definitions:

w public PeriodAxisLabelInfo[] getLabelInfo();
Returns an array of objects where each object defines the format for one band of labels along
the axis.

= public void setLabellInfo(PeriodAxisLabelInfo[] info);
Sets an array of objects where each object defines the format for one band of labels along the
axis.

Examples of specifying label bounds can be found in the PeriodAxisDemol and PeriodAxisDemo?2
classes, included in the JFreeChart Demo distribution.

24.32.5 Time Zones

In order to “peg” time periods to the absolute time line (in Java, measured in milliseconds since
1-Jan-1970 GMT), you need to specify a time zone. Use the following methods:

= public TimeZone getTimeZone();
Returns the TimeZone used to “peg” time periods to the absolute time line.

= public void setTimeZone(TimeZone zone);
Sets the TimeZone that is used to “peg” time periods to the absolute time line.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 234

24.32.6 Other Methods

The remaining methods defined by this class are mostly for internal use:

= public double valueToJava2D(double value, Rectangle2D area, RectangleEdge edge);
Converts a data value to a Java2D coordinate, assuming that the axis lies along the specified
edge of the given area.

= public double java2DToValue(double java2DValue, Rectangle2D area, RectangleEdge edge);
Converts a Java2D coordinate back into a data value, assuming that the axis lies along the
specified edge of the given area.

= public void configure();

Configures the axis for use. This method is usually called by the plot when the axis is first
assigned to the plot, because a new plot means a new set of data and therefore the axis range
may need to be updated. You won’t normally need to call this method yourself.

= public AxisSpace reserveSpace(Graphics2D g2, Plot plot, Rectangle2D plotArea,
RectangleEdge edge, AxisSpace space);

Reserves additional space in space to allow room for this axis to be displayed. This method is
called by the plot during the process of laying out and drawing the chart, you won’t normally
need to call this method yourself.

= public AxisState draw(Graphics2D g2, double cursor, Rectangle2D plotArea,
Rectangle2D dataArea, RectangleEdge edge, PlotRenderingInfo plotState);
Draws the axis. This method is called by the plot, you won’t normally need to call it yourself.

= public List refreshTicks(Graphics2D g2, AxisState state, Rectangle2D plotArea,
Rectangle2D dataArea, RectangleEdge edge);
For this axis, this method returns an empty list.

24.32.7 Equals, Cloning and Serialization

This class overrides the equals() method from the Object class:

= public boolean equals(Object obj);
Tests this axis for equality with an arbitrary object. Another object is considered equal if it is
a PeriodAxis with the same attributes as this axis.

The axis is Cloneable and PublicCloneable:

= public Object clone() throws CloneNotSupportedException;
Returns a clone of the axis.

The axis is Serializable.

24.32.8 Notes

Some points to note:

e two demos (PeriodAxisDemol.java and PeriodAxisDemo2.java) are included in the JFreeChart
demo collection.

See Also

DateAxis, PeriodAxisLabelInfo.

24.33 PeriodAxisLabellnfo

24.33.1 Overview

A helper class that records the information for one “band” of labels on a PeriodAxis. When you
are specifying the label bands for the axis, you create an array of PeriodAxisLabelInfo objects—for
example:

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 235

PeriodAxisLabelInfo[] info = new PeriodAxisLabelInfo[2];

info[0] = new PeriodAxisLabelInfo(Month.class, new SimpleDateFormat ("MMM"));
info[1] = new PeriodAxisLabelInfo(Year.class, new SimpleDateFormat("yyyy"));
domainAxis.setLabelInfo(info);

In the above example, there are two bands. The first band is split into 1 month time periods and the
second band is split into 1 year time periods. The sample code comes from the PeriodAxisDemol. java
file that is included in the JFreeChart Demo distribution.

24.33.2 Constructors

To create a new instance:

= public PeriodAxisLabelInfo(Class periodClass, DateFormat dateFormat);
Creates a new instance based on the specified periodClass (see below). The dateFormat used to
format the labels for each time period.

= public PeriodAxisLabelInfo(Class periodClass, DateFormat dateFormat,

Rectanglelnsets padding, Font labelFont, Paint labelPaint,

boolean drawDividers, Stroke dividerStroke, Paint dividerPaint);

Creates a new instance based on the specified periodClass (see below). The dateFormat is used
to format the labels for each time period. The padding controls the minimum gap between time
period labels. The remaining arguments control the appearance of the labels and the (optional)
dividing lines between labels.

When constructing an instance of this class, you need to specify the class of time period that you
want to use for labelling purposes. This is usually one of the following: Year.class, Quarter.class,
Month.class, Week.class, Day.class, Hour.class, Minute.class, Second.class Or Millisecond.class.

24.33.3 Methods
The following methods are defined:

= public Class getPeriodClass();
Returns the specific class used to represent time periods—it should be some subclass of RegularTimePeriod.

= public DateFormat getDateFormat();
Returns the formatter for the date labels.

= public RectangleInsets getPadding();
Returns the padding that controls the minimum space between labels.

= public Font getLabelFont();
Returns the Font used to display labels for each time period.

= public Paint getLabelPaint();
Returns the Paint that is used as the foreground color when displaying labels for each time
period.

= public boolean getDrawDividers();
Returns a flag that determines whether or not dividers are drawn between time periods.

= public Stroke getDividerStroke();
Returns the Stroke used to draw dividers between time periods.

= public Paint getDividerPaint();
Returns the Paint used to draw dividers between time periods.

= public RegularTimePeriod createInstance(Date millisecond, TimeZone zone);
Creates a time period that includes the specified millisecond, taking into account the time zone.
The time period will be an instance of the class returned by the getPeriodClass() method.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 236

24.33.4 Equals, Cloning and Serialization

To test this instance for equality with another object:

= public boolean equals(Object obj);
Tests this instance for equality with an arbitrary object. This method will return true if obj is
an instance of PeriodAxisLabelInfo with equivalent settings to this instance.

To make a clone of this instance:

= public Object clone() throws CloneNotSupportedException;
Creates a clone of this object.

This class is Serializable.

24.34 QuarterDateFormat

24.34.1 Overview

A subclass of DateFormat that is used to convert a Date to a String. The default format is “YYYY
Q” where “YYYY” is replaced by the year and “Q” is replaced by a symbol representing the quarter
(symbols can be defined via the constructor).

Any symbols can be used to represent the four quarters in a year, but the following default symbol
sets are provided:

e REGULAR_QUARTERS — the symbols “17, “27, “3” and “4”;
e ROMAN_QUARTERS — the symbols “I”, “IT”, “III”, and “IV”;

® GREEK_QUARTERS — greek symbols (since 1.0.6).

24.34.2 Constructors

The following constructors are available:

= public QuarterDateFormat() ;
Equivalent to QuarterDateFormat (TimeZone.getDefault())—see the next constructor.

= public QuarterDateFormat(TimeZone zone);
Equivalent to QuarterDateFormat(zone, REGULAR_QUARTERS)—see the next constructor.

= public QuarterDateFormat(TimeZone zone, String[] quarterSymbols);
Equivalent to QuarterDateFormat (zone, quarterSymbols, false)—see the next constructor.

= public QuarterDateFormat(TimeZone zone, String[] quarterSymbols, boolean quarterFirst);
[1.0.6]

Creates a new date formatter linked to the specified zone using the supplied symbols for the
four quarters (the array should have four entries). The quarterFirst flag controls whether the
quarter is displayed before or after the year (for example, “2007-IV” or “IV-2007").

24.34.3 Methods

The format method is overridden to create the formatted version of the given date:

= public StringBuffer format(Date date, StringBuffer toAppendTo, FieldPosition fieldPosition);
Returns a string representing the given date. The string contains the year followed by a space
followed by the symbol corresponding to the quarter in which the date falls (the symbols are
supplied in the constructor).

The parse method is overridden but not implemented:

= public Date parse(String source, ParsePosition pos);
This method has not been implemented, it simply returns null.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 237

24.34.4 Notes

Some points to note:

e a demo (QuarterDateFormatDemo.java) showing this class being used with a PeriodAxis is
included in the JFreeChart demo collection.

24.35 SegmentedTimeline

24.35.1 Overview

A segmented timeline for use with a DateAxis.

24.35.2 Usage

Please refer to the Javadocs.

24.36 StandardTickUnitSource

24.36.1 Overview

A TickUnitSource that dynamically creates tick units where the tick size is an integer power of 10,
and the number format is DecimalFormat("0.0E0"). The primary advantage of this source is that the
tick size is calculated dynamically, so it can handle very large and very small axis ranges (unlike
the TickUnits class which contains a finite collection of tick sizes).

24.36.2 Usage
To use this TickUnitSource with a NumberAxis, create a new instance and install it as follows:
NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();

TickUnitSource units = new StandardTickUnitSource();
rangeAxis.setStandardTickUnits(units);

24.36.3 Constructor

This class has a single constructor:

= public StandardTickUnitSource();
Creates a new instance. There are no customisable attributes for this class.

24.36.4 Methods

This class implements the three methods defined in the TickUnitSource method. These methods
are called by the axis, you won’t normally need to call these methods directly:

= public TickUnit getLargerTickUnit(TickUnit unit);
Returns the next larger tick unit relative to unit.

= public TickUnit getCeilingTickUnit(TickUnit unit);
Returns a tick unit that is either equal to unit or the next larger tick unit.

= public TickUnit getCeilingTickUnit(double size);
Returns a tick unit that is equal in size to size, or the next larger tick unit.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 238

24.36.5 Equals, Cloning and Serialization

This class overrides the equals() method:®

= public boolean equals(Object obj);
Tests this tick unit source for equality with an arbitrary object.

Instances of this class are Serializable but not Cloneable (cloning is unnecessary, since instances
of this class are immutable).

24.36.6 Notes

Some points to note:

e this class is not used by default, but can be installed in an axis if necessary—see SmallNumberDemo. java
in the JFreeChart demo collection for an example.

24.37 SubCategoryAxis

24.37.1 Overview

An extension of the CategoryAxis class that allows subcategories to be displayed along the domain
axis for a CategoryPlot. This type of axis can be usefully employed along with the GroupedStackedBarRenderer
class.

24.37.2 Constructors

To create a new instance:

= public SubCategoryAxis(String label);
Creates a new axis with the specified 1abel (which may be null).

24.37.3 General Attributes

To control the font used to display the sub-labels:
= public Font getSubLabelFont();

Returns the sub-label font (never null). The default value is Font("SansSerif", Font.PLAIN,
10).

= public void setSubLabelFont(Font font);
Sets the sub-label font and sends an AxisChangeEvent to all registered listeners. If font is null,
this method throws an IllegalArgumentException.

= public Paint getSubLabelPaint();
Returns the paint used to draw the sub-labels (never null). The default value is Color.black.

= public void setSubLabelPaint(Paint paint);
Sets the sub-label paint and sends an AxisChangeEvent to all registered listeners. If paint is
null, this method throws an IllegalArgumentException.

24.37.4 Subcategories

The subcategories for the axis need to be specified manually. All the subcategories are displayed
within each category along the axis. The categories are driven by the content of the dataset, while
the subcategories are just arbitrary labels with no formal connection to the dataset.

= public void addSubCategory(Comparable subCategory) ;
Adds a subcategory to the axis.

5Since version 1.0.7.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 239

24.37.5 Other Methods

The remaining methods are used internally:

= public AxisSpace reserveSpace(...);
Calculates the amount of space required to draw the axis. This overrides the method defined
in the CategoryAxis class, because additional space is required to draw the subcategory labels.

= public AxisState draw(...);
Overrides the draw() method in the CategoryAxis class to include the sublabels in the axis.

= protected AxisState drawSubCategoryLabels(...);
Draws the subcategory labels.

24.37.6 Equals, Cloning and Serialization
This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this axis for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

24.37.7 Notes

A couple of demos (SubCategoryAxisDemol .java and StackedBarChartDemo4.java) are included in the
JFreeChart demo collection.

See Also

GroupedStackedBarRenderer.

24.38 SymbolAxis

24.38.1 Overview

A vValueAxis that maps integer values (starting at zero) to symbols (strings). This can be used to
present:

e a CategoryPlot with pseudo-categories displayed along the range axis (y-axis);

e an XYPlot with pseudo-categories displayed along the domain axis (x-axis) and/or range axis
(y-axis).

24.38.2 Constructors

To create a new axis:

= public SymbolAxis(String label, String[] sv);
Creates a new axis with the specified label. The sv array contains the strings that are displayed
along the axis for the integer values.

24.38.3 Attributes

To access the symbols used for the integer values along the axis:

w public String[] getSymbols();
Returns the symbols used by the axis. These are the symbols that were specified in the
constructor. The returned array is a copy, so modifying it will not change the axis.

To access the flag that controls whether or not grid bands are painted for alternate tick values:

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS

= public boolean isGridBandsVisible();
Returns the flag that controls whether or not the alternating grid bands are drawn for the axis.
The default value is true.

= public void setGridBandsVisible(boolean flag);
Sets the flag that controls whether or not the alternating grid bands are drawn for the axis,
and sends an AxisChangeEvent to all registered listeners.

To access the grid band paint:

= public Paint getGridBandPaint();
Returns the paint used to color alternate bands within the plot area. The default value is
Color(232, 234, 232, 128) (a light gray with partial transparency).

= public void setGridBandPaint(Paint paint);
Sets the paint used to color alternate bands within the plot area, and sends a AxisChangeEvent
to all registered listeners. An IllegalArgumentException will be thrown if paint is null.

From version 1.0.7 onwards, you can specify the alternate grid band colour as well:

= public Paint getGridBandAlternatePaint(); [1.0.7]
Returns the paint (never null) used fill alternate bands within the plot area. The default value
is Color(0, 0, 0, 0) (that is, completely transparent). See also getGridBandPaint ().

= public void setGridBandAlternatePaint(Paint paint); [1.0.7]
Sets the paint used to fill alternate bands within the plot area, and sends an AxisChangeEvent
to all registered listeners. If paint is null, this method throws an IllegalArgumentException.

24.38.4 Other Methods

Most of the other methods in this class are used internally:

= public String valueToString(double value);

Returns the symbol for the given value. The value is rounded to an integer, then the symbol
is obtained from the array of symbols defined for the axis. If value is out of range, an empty
string is returned. This method is called by the refreshTicks() code.

= public AxisState draw(Graphics2D g2, double cursor, Rectangle2D plotArea,
Rectangle2D dataArea, RectangleEdge edge, PlotRenderingInfo plotState);
Called by the plot to draw the axis. You won’t normally call this method yourself.

= protected void autoAdjustRange();
Adjusts the axis range to fit the data. In this case, the axis range is fixed, so this method
should not do anything.

= public List refreshTicks(Graphics2D g2, AxisState state, Rectangle2D dataArea,
RectangleEdge edge);

Returns a list of ticks for display on the axis. This method is called by internal code, you won’t
normally call it yourself.

w protected List refreshTicksHorizontal(Graphics2D g2, Rectangle2D dataArea,
RectangleEdge edge);

Creates a list of ticks for the axis when it is displayed “horizontally”. That is, at the top or
bottom of the plot.

= protected List refreshTicksVertical(Graphics2D g2, Rectangle2D dataArea,

RectangleEdge edge);

Creates a list of ticks for the axis when it is displayed “vertically”. That is, at the left or right
of the plot.

= protected void drawGridBands(Graphics2D g2, Rectangle2D plotArea,
Rectangle2D dataArea, RectangleEdge edge, List ticks);
Draws the grid bands.

= protected void drawGridBandsHorizontal (Graphics2D g2, Rectangle2D plotArea,
Rectangle2D dataArea, boolean firstGridLineIsDark, List ticks);
Draws the grid bands for a horizontal axis.

240

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 241

= protected void drawGridBandsVertical(Graphics2D g2, Rectangle2D drawArea,
Rectangle2D plotArea, boolean firstGridLinelIsDark, List ticks);
Draws the grid bands for a vertical axis.

= protected void selectAutoTickUnit(Graphics2D g2, Rectangle2D dataArea,
RectangleEdge edge);
Throws an UnsupportedOperationException.

24.38.5 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);

Tests this axis for equality with an arbitrary object. To be considered equal, obj must be non-
null, an instance of SymbolAxis, have the same list of symbols as this axis, and super.equals(obj)
must return true.

Instances of this class are Cloneable and Serializable.

24.38.6 Notes

Some points to note:

e a demo for a CategoryPlot (LineChartDemo8.java) is included in the JFreeChart demo distri-
bution;

e a demo for an XYPlot (SymbolAxisDemol.java) is included in the JFreeChart demo distribution.

24.39 Tick

24.39.1 Overview

A utility class representing a tick on an axis. Used temporarily during the drawing process only—
you won’t normally use this class yourself.

See Also
TickUnit.

24.40 TickType

24.40.1 Overview

This class defines tokens representing the tick type for an axis (see the NumberTick class). This class
was introduced in JFreeChart version 1.0.7.

o TickType.MAJOR;

e TickType.MINOR;

24.40.2 Notes

The TickType tokens are used by the NumberTick class to support major and minor tick marks on
the LogAxis class. Eventually, this support will be rolled out to the NumberAxis class also.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 242

24.41 TickUnit

24.41.1 Overview

An abstract class representing a tick unit, with subclasses including;:

e DateTickUnit — for use with a DateAxis;

e NumberTickUnit — for use with a NumberAxis.

24.41.2 Constructors

The standard constructor:

= public TickUnit(double size);
Equivalent to TickUnit(size, 0)—see the next constructor.

= public TickUnit(double size, int minorTickCount); [1.0.7]
Creates a new tick unit with the specified size and minor tick count.

24.41.3 General Methods
To get the tick size:

= public double getSize();
Returns the size of the tick unit—that is, the gap (in data units) between consecutive tick
marks along the axis. The value is specified in the constructor.

To get the minor tick count:

= public int getMinorTickCount();
Returns the number of minor tick units between consecutive major tick units.

To convert a data value to a string:

= public String valueToString(double value);
Returns a string representing the specified data value. Subclasses may override this method to
provide custom formatting.

= public int compareTo(Object object);
Compares this instance to an arbitrary object. This method is defined by the Comparable
interface, and is used to order tick units by size.

24.41.4 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this unit for equality with an arbitrary object.

Instances of this class are immutable and Serializable.

24.41.5 Notes

Implements the Comparable interface, so that a collection of tick units can be sorted easily using
standard Java methods. In particular, the StandardTickUnitSource class makes use of this feature.

See Also

TickUnits.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 243

24.42 TickUnits

24.42.1 Overview

A collection of tick units. This class is used by the DateAxis and NumberAxis classes to store a list
of “standard” tick units. The auto-tick-unit-selection mechanism chooses one of the standard tick
units in order to maximise the number of ticks displayed without having the tick labels overlap.

24.42.2 Constructors

The default constructor:

= public TickUnits();
Creates a new collection of tick units, initially empty.

24.42.3 Methods

To add a new tick unit to the collection:

= public void add(TickUnit unit);
Adds the tick unit to the collection.

To find the tick unit in the collection that is the next largest in size compared to the specified tick
unit:

w public TickUnit getLargerTickUnit(TickUnit unit);
Returns the tick unit that is one size larger than the specified unit.

24.42.4 Notes

The NumberAxis class has a static method createStandardTickUnits() that generates a tick unit
collection (of standard tick sizes) for use by numerical axes.

See Also
TickUnit.

24.43 TickUnitSource

24.43.1 Overview

The interface through which a ValueAxis finds a suitable tick unit. Classes that implement this
interface include:

o TickUnits;

® StandardTickUnitSource;

24.43.2 Methods

The following methods allow a TickUnit to be obtained from the source:

w public TickUnit getLargerTickUnit(TickUnit unit);
Returns a tick unit that is larger than the supplied unit.

w public TickUnit getCeilingTickUnit(TickUnit unit);
Returns a tick unit that is equal to or larger in size than the specified unit.

= public TickUnit getCeilingTickUnit(double size);
Returns a tick unit with size equal to or larger than the specified size.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 244

24.44 Timeline

24.44.1 Overview

The interface that defines the methods for a timeline that can be used with a DateAxis.

24.44.2 Methods

The interface declares the following methods:

= public long toTimelineValue(long millisecond);
Translates a millisecond (as defined by java.util.Date) into an index along this timeline.

= public long toTimelineValue(Date date);
Translates a Date into an index along the timeline.

= public long toMillisecond(long timelineValue);
Converts a timeline index back into a millisecond. Note that many timeline index values can
map to a single millisecond.

= public boolean containsDomainValue(long millisecond);
Returns true if the millisecond is contained within the timeline, and false otherwise.

= public boolean containsDomainValue(Date date);
Returns true if the date is contained within the timeline, and false otherwise.

= public boolean containsDomainRange(long fromMillisecond,

long toMillisecond);

Returns true if the range of millisecond values is contained within the timeline, and false
otherwise.

= public boolean containsDomainRange(Date fromDate, Date toDate);
Returns true if the range of dates is contained within the timeline, and false otherwise.

24.44.3 Notes

The SegmentedTimeline class implements this interface.

24.45 ValueAxis

24.45.1 Overview

The base class for all axes that display “values”, with the two key subclasses being NumberAxis and
DateAxis.

At the lowest level, the axis values are manipulated as double primitives, obtained from the Number
objects supplied by the plot’s dataset.

24.45.2 Constructors

The constructors for this class are protected, you cannot create a ValueAxis directly—you must use
a subclass.

24.45.3 Attributes

The attributes maintained by this class, in addition to those that it inherits from the Axis class, are
listed in Table 24.6. There are methods to read and update most of these attributes. In general,
updating an axis attribute will result in an AxisChangeEvent being sent to all (or any) registered
listeners. The default values used to initialise the axis attributes (when necessary) are listed in
Table 24.7.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 245

Attribute: Description:

inverted A flag that is used to “invert” the axis scale.

autoRange A flag controlling whether or not the axis range is automatically
adjusted to fit the range of data values.

defaultAutoRange The default range when there is no data (since 1.0.5).

fixedAutoRange If specified, the auto-range is calculated by subtracting this value
from the maximum domain value in the dataset.

autoRangeMinimumSize The smallest axis range allowed when it is automatically calcu-
lated.

lowerMargin The margin to allow at the lower end of the axis scale (expressed
as a percentage of the total axis range).

upperMargin The margin to allow at the upper end of the axis scale (expressed

as a percentage of the total axis range).
autoTickUnitSelection | A flag controlling whether or not the tick units are selected auto-

matically.

standardTickUnits A collection of the “standard” tick units that can be used by this
axis.

verticalTickLabels A flag that controls whether or not the tick labels are rotated 90
degrees.

positiveArrowVisible A flag that controls whether or not an arrow is drawn at the
positive end of the scale.

negativeArrowVisible A flag that controls whether or not an arrow is drawn at the
negative end of the scale.

upArrow The shape used to draw an arrow at the end of an axis pointing
upwards.

downArrow The shape used to draw an arrow at the end of an axis pointing
downwards.

leftArrow The shape used to draw an arrow at the end of an axis pointing
leftwards.

rightArrow The shape used to draw an arrow at the end of an axis pointing
rightwards.

Table 24.6: Attributes for the Valuedzis class

Name: ‘ Value:

DEFAULT_AUTO_RANGE true;

DEFAULT_LOWER_BOUND 0.0; [Deprecated, 1.0.5]
DEFAULT_UPPER_BOUND 1.0; [Deprecated, 1.0.5]
DEFAULT UPPER MARGIN | 0.05 (5 percent)
DEFAULT_LOWER_MARGIN | 0.05 (5 percent)

Table 24.7: Valuedzis class default attribute values

24.45.4 Usage

To modify the attributes of a ValueAxis, you first need to obtain a reference to the axis. For a
CategoryPlot, you can use the following code:

CategoryPlot plot = (CategoryPlot) chart.getPlot();
ValueAxis rangeAxis = plot.getRangeAxis();
// modify the axis here...

The code for an XYPlot is very similar, except that the domain axis is also a ValueAxis in this case:

XYPlot plot = (XYPlot) chart.getPlot();
ValueAxis domainAxis = plot.getDomainAxis();
ValueAxis rangeAxis = plot.getRangeAxis();
// modify the axes here...

Having obtained an axis reference, you can:
e control the axis range, see section 24.45.5;

e invert the axis scale, see section 24.45.6;

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 246

24.45.5 The Axis Range

The azis range defines the highest and lowest values that will be displayed on axis. On a chart, it
is typically the case that data values outside the axis range are clipped, and therefore not visible
on the chart.

Automatic Bounds Calculation

By default, JFreeChart is configured to automatically calculate axis ranges so that all of the data
in your dataset is visible. It does this by determining the highest and lowest values in your dataset,
adding a small margin (to prevent the data being plotted right up to the edge of a chart), and
setting the axis range. To control whether or not the axis range is automatically adjusted to fit the
available data:

w public boolean isAutoRange();
Returns the flag that controls whether the axis range is automatically updated to reflect the
data values.

= public void setAutoRange(boolean auto);
Sets the flag that controls whether or not the axis range is automatically adjusted to fit the
available data values, and sends an AxisChangeEvent to all registered listeners.

= protected void setAutoRange(boolean auto, boolean notify);
An alternative version of the above method that lets you specify whether or not the listeners
are notified.

When the axis range is calculated automatically, a margin is added to the lower and upper bounds
(the default is 0.05 or 5 percent):

= public double getLowerMargin();
Returns the lower margin as a percentage of the overall axis length (the default is 0.05 or 5
percent).

= public void setLowerMargin(double margin);
Sets the lower margin (specified as a percentage of the overall axis length) and sends an
AxisChangeEvent to all registered listeners.

= public double getUpperMargin();
Returns the upper margin as a percentage of the overall axis length (the default is 0.05 or 5
percent).

= public void setUpperMargin(double margin);
Sets the upper margin (specified as a percentage of the overall axis length) and sends an
AxisChangeEvent to all registered listeners.

Note that the margins are only applied when the axis bounds are automatically calculated. If you
set the axis bounds manually (see the next section) then the margins are ignored.

If the plot has no data, then the auto range is set to the default:

= public Range getDefaultAutoRange(); [1.0.5]
Returns the default auto range (never null).

= public void setDefaultAutoRange(Range range); [1.0.5]
Sets the default auto range and sends an AxisChangeEvent to all registered listeners. If range is
null, this method throws an IllegalArgumentException.

Setting the Range Manually

To manually set the axis range (which automatically disables the auto-range flag):

= public void setRange(double lower, double upper);
Equivalent to setRange(new Range(lower, upper))—see below.

= public void setRange(Range range);
Equivalent to setRange(range, true, true)—see below.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 247

= public void setRange(Range range, boolean turnOffAutoRange, boolean notify);

Sets the bounds of the axis so that it will display the range of values specified by range. If
notify is true, an AxisChangeEvent is sent to all registered listeners. If turn0ffAutoRange is true,
the autoRange flag is set to false (which is what you want if you intend to control the axis range
manually).

To set the lower bound for the axis:

= public void setLowerBound(double value);
Sets the lower bound for the axis. If the auto-range attribute is true it is automatically switched
to false. Registered listeners are notified of the change.

To set the upper bound for the axis:

= public void setUpperBound(double value);
Sets the upper bound for the axis. If the auto-range attribute is true it is automatically
switched to false. Registered listeners are notified of the change.

24.45.6 Inverting the Axis Scale

There is a flag that can be used to “invert” the axis scale:

= public boolean isInverted();
Returns the flag that controls whether or not the axis scale is inverted.

= public void setInverted(boolean flag);
Sets the flag that controls whether or not the axis scale is inverted and sends an AxisChangeEvent
to all registered listeners.

24.45.7 Tick Labels
Tick labels can be rotated 90 degrees (typically to fit more labels in) by setting the following flag:

= public boolean isVerticalTickLabels();
Returns the flag that controls whether or not the tick labels are rotated by 90 degrees. The
default value is false.

= public void setVerticalTickLabels(boolean flag);
Sets the flag that controls whether or not the tick labels are rotated by 90 degrees, and, if the
flag value changes, sends a RendererChangeEvent to all registered listeners.

For other tick label settings, see section 24.2.7.

24.45.8 Other Methods

A key function for a ValueAxis is to convert a data value to an output (Java2D) coordinate for
plotting purposes. The output coordinate will be dependent on the area into which the data is
being drawn:

= public double valueToJava2D(double dataValue, Rectangle2D dataArea, RectangleEdge edge);
Converts a data value into a co-ordinate along one edge of the dataArea rectangle. The caller
can pass in an arbitrary rectangle, but typically it should match the rectangle defined by the
interior of the chart’s axes.

The inverse function converts a Java2D coordinate back to a data value:

= public double java2DToValue(double java2DValue, Rectangle2D dataArea, RectangleEdge edge);
Converts a Java2D coordinate (defined relative to one edge of the specified dataArea) back to
a data value.

To set a flag that controls whether or not the axis tick units are automatically selected:

= public void setAutoTickUnitSelection(boolean flag);
Sets a flag (commonly referred to as the auto-tick-unit-selection flag) that controls whether or
not the tick unit for the axis is automatically selected from a collection of standard tick units.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 248

24.45.9 Notes
Some points to note:
e in a CategoryPlot, the range axis is required to be a subclass of ValueAxis.
e in an XYPlot, both the domain and range axes are required to be a subclass of ValueAxis.

See Also

Axis, DateAxis, NumberAxis.

24.46 ValueTick

24.46.1 Overview

The base class for the NumberTick and DateTick classes. Instances of these classes are created in the
refreshTicks () method of the various axis classes.

24.46.2 Constructors

To create a new instance:

= public ValueTick(double value, String label, TextAnchor textAnchor,
TextAnchor rotationAnchor, double angle);
Creates a new tick with the specified value.

= public ValueTick(TickType tickType, double value, String label, TextAnchor textAnchor,
TextAnchor rotationAnchor, double angle); [1.0.7]
Creates a new tick with the specified type and value.

24.46.3 General Methods
To get the tick type:

w public TickType getTickType(); [1.0.7]
Returns the tick type (MAJOR or MINOR).

To get the value for the tick:

= public double getValue();
Returns the value for this tick.
24.46.4 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this tick for equality with an arbitrary object.

24.46.5 Notes

The minor tick type is used only by the LogAxis class at present.

See Also

DateTick, NumberTick.

Chapter 25

Package: org.jfree.chart.block

25.1 Introduction

The org. jfree.chart.block package contains classes that are used for laying out rectangular items
(blocks) within containers. Primarily, the classes in this package are used by the LegendTitle class.

25.2 AbstractBlock

25.2.1 Overview

A base class for implementing a Block, which is used as a layout unit in JFreeChart (particularly
for the LegendTitle class). Subclasses include:

® BlockContainer;
® ColorBlock;
o EmptyBlock;
® LabelBlock;
® LegendGraphic;

e Title.

25.2.2 Constructor

To create a new block:

= protected AbstractBlock();
Creates a new block.

25.2.3 General Attributes
The block has an identifier:

w public String getID();
Returns the block id. The default value is null.

= public void setID(String id);
Sets the block id (null is permitted).

You can specify the preferred height and width for the block:

= public double getHeight();
Returns the block height.

249

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 250

= public void setHeight(double height);
Sets the block height. This is a “preferred” height which may or may not be observed by the
layout manager.

= public double getWidth();
Returns the block width.

= public void setWidth(double width);
Sets the block width. This is a “preferred” width which may or may not be observed by the
layout manager.

The margin is the space around the outside of the block’s border:

= public RectangleInsets getMargin();
Returns the margin around the outside of the block’s border. The default value is
RectanglelInsets.ZERO_INSETS.

= public void setMargin(RectangleInsets margin);
Sets the margin around the outside of the block’s border.

You can specify a frame (or border) for the block:

= public BlockFrame getFrame(); [1.0.5]
Returns the border that will be drawn around the block. The default value is BlockBorder . NONE.

= public void setFrame(BlockFrame frame); [1.0.5]
Sets the border that will be drawn around the block. If frame is null, this method throws an
IllegalArgumentException.

The padding is an area of whitespace inside the block’s frame:

= public RectangleInsets getPadding();
Returns the padding between the block’s content and its border. The default value is
RectanglelInsets.ZERO_INSETS.

w public void setPadding(Rectanglelnsets padding);
Sets the padding between the block’s content and its border. If padding is null, this method
throws an IllegalArgumentException.

25.2.4 Layout

For layout purposes, a block can be asked to arrange itself subject to some constraint, and return
the space required by the block:

= public Size2D arrange(Graphics2D g2);
Arranges the block without constraint, and returns its size. Keep in mind that the block may
be a BlockContainer that contains other blocks.

= public Size2D arrange(Graphics2D g2, RectangleConstraint constraint);
Arranges the block subject to the specified constraint and returns its size. Keep in mind that
the block may be a BlockContainer that contains other blocks.

To control the current bounds for the block:

= public Rectangle2D getBounds();
Returns the bounds for the block.

= public void setBounds(Rectangle2D bounds);
Sets the bounds for the block. This method is often called by a layout manager.

The following utility methods are provided for subclasses to use:

= protected double trimToContentWidth(double fixedWidth);
Reduces the given width to account for the margin, border and padding.

= protected double trimToContentHeight(double fixedHeight);
Reduces the given height to account for the margin, border and padding.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 251

= protected RectangleConstraint toContentConstraint(RectangleConstraint c);
Translates a bounds constraint into a content constraint.

= protected double calculateTotalWidth(double contentWidth);
Calculates the bounds width from the content width.

= protected double calculateTotalHeight(double contentHeight);
Calculates the bounds height from the content height.

= protected Rectangle2D trimMargin(Rectangle2D area);
Trims the block’s margin from area.

= protected Rectangle2D trimBorder (Rectangle2D area);
Trims the block’s border from area.

= protected Rectangle2D trimPadding(Rectangle2D area);
Trims the block’s padding from area.

25.2.5 Drawing

This class is abstract, so it doesn’t have a draw() method implemented. However, it does provide a
method to draw the current border/frame:

= protected void drawBorder (Graphics2D g2, Rectangle2D area);
Draws the border for the block.

25.2.6 Equals, Cloning and Serialization
To test a block for equality with an arbitrary object:

= public boolean equals(Object obj);
Returns true if this block is equal to obj, and false otherwise.

Instances of this class are Cloneable and Serializable.

25.2.7 Notes

Some points to note:

e the get/setBorder() methods have been deprecated in favour of the get/setFrame() methods;

25.3 Arrangement

25.3.1 Overview

A layout manager that can arrange blocks.

25.3.2 Methods
This interface defines the following methods:

= public void add(Block block, Object key);
Adds a block to the layout, with the specified key. The layout manager has an opportunity to
record the key associated with any block (or it can choose to ignore this information).

= public void arrange(BlockContainer container, RectangleConstraint constraint,
Graphics2D g2);
Arranges the blocks within the given container, subject to the specified constraint.

w public void clear();
Clears any cached layout information.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 252

25.3.3 Notes

Some points to note:

e classes that implement this interface include:

— BorderArrangement;
— CenterArrangement;
— ColumnArrangement;

— FlowArrangement; and

GridArrangement.

25.4 Block

25.4.1 Overview

This interface defines methods that allow a rectangular graphical object (referred to generically as
a “block”) to:

o identify itself;
e provide information about its size, perhaps subject to an external constraint;
e set its bounds.

Some blocks draw their own content, while other blocks act as containers for yet more blocks.

25.4.2 Methods
To access the block’s ID:

= public String getID();
Returns the ID for the block (depending on the application, this might be null).

= public void setID(String id);
Sets the id for the block.

To layout the contents of the block:

= public Size2D arrange(Graphics2D g2);
Arranges the block without any constraints and returns the block size.

w public Size2D arrange(Graphics2D g2, RectangleConstraint constraint);
Arranges the block, subject to the given constraint, and returns the resulting size.

To access the current bounds for the block:

= public Rectangle2D getBounds();
Gets the bounds for the block.

= public void setBounds(Rectangle2D bounds);
Sets the bounds for the block.

25.5 BlockBorder

25.5.1 Overview

A simple border that can be assigned to any subclass of AbstractBlock (via that class’s setFrame ()
method). This class implements the BlockFrame interface.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 253

25.5.2 Constructors

There are two constructors:

= public BlockBorder();
Equivalent to BlockBorder(Color.black)—see below.

= public BlockBorder(Paint paint);
Equivalent to BlockBorder (new RectangleInsets(1, 1, 1, 1), paint)—see below.

= public BlockBorder(double top, double left, double bottom, double right);
Equivalent to BlockBorder((new RectangleInsets(top, left, bottom, right), Color.black))—
see below.

= public BlockBorder(double top, double left, double bottom, double right, Paint paint);
Equivalent to BlockBorder ((new RectangleInsets(top, left, bottom, right), paint))—see be-
low.

= public BlockBorder (RectangleInsets insets, Paint paint);
Creates a new block border using the specified insets and paint. If insets or paint is null,
this constructor throws an IllegalArgumentException.

25.5.3 General Attributes
The following read-only attributes are defined:

= public RectangleInsets getInsets();
Returns the insets that define the available drawing space for the border (never null).

= public Paint getPaint();
Returns the paint that is used to draw the border. The initial value is specified in the con-
structor for this class. This method never returns null.

25.5.4 Other Methods
JFreeChart calls the following method to draw the border:

= public void draw(Graphics2D g2, Rectangle2D area);
Draws the border around the edges of the specified area, always staying within the area.
25.5.5 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this border for equality with an arbitrary object.

See Also

BlockFrame.

25.6 BlockContainer

25.6.1 Overview

A container for blocks that uses an Arrangement to organise the layout of the blocks. The container
is itself a Block, which makes it possible to nest block containers to arbitrary levels.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 254

25.6.2 Constructors

To create a new container:

= public BlockContainer();
Creates a new container using a BorderArrangement.

= public BlockContainer (Arrangement arrangement);
Creates a new container using the specified arrangement.

25.6.3 Methods

To get or set the layout manager:

= public Arrangement getArrangement();
Returns the object responsible for the block layout.

= public void setArrangement (Arrangement arrangement);

Sets the object responsible for the block layout.
To check if the container has an content:

= public boolean isEmpty();
Returns true if the container is empty (contains no blocks), and false otherwise.

To get a list of the blocks within the container:

= public List getBlocks();
Returns an unmodifiable list of the blocks in the container.

To add a block:

= public void add(Block block);
Adds a block to the container.

= public void add(Block block, Object key);
Adds a block to the container along with the given key (which is intended for the use of the
layout manager).

To remove all blocks from the container:

= public void clear();
Clears all the blocks in the container.

To arrange the blocks within the container (this will set the bounds for all the blocks):

= public Size2D arrange(Graphics2D g2, RectangleConstraint constraint);
Arranges the blocks in the container, subject to the specified constraint.

To draw the contents of the container:

= public void draw(Graphics2D g2, Rectangle2D area);
Draws the blocks within the specified area.

25.6.4 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);
Returns true if this container is equal to obj and false otherwise.

This class is Cloneable and Serializable.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 255

25.7 BlockFrame

25.7.1 Overview

An interface that defines the API for a border that can be assigned to any AbstractBlock (via that
class’s setFrame () method). This interface is implemented by:

® BlockBorder;

o LineBorder.

25.7.2 Interface Methods

This interface defines two methods:

w public RectangleInsets getInsets(); [1.0.5]
Returns the space used to draw the frame.

= public void draw(Graphics2D g2, Rectangle2D area); [1.0.5]
Draws the frame within the specified area.

25.7.3 Notes

This interface was introduced in JFreeChart version 1.0.5.

See Also
AbstractBlock.

25.8 BlockParams

25.8.1 Overview

A carrier for the (optional) parameters passed to a Block in its draw() method.

25.8.2 Methods

To access the flag that controls whether or not entities are being generated:

= public boolean getGenerateEntities();
Returns true if entities should be generated.

= public void setGenerateEntities(boolean generate);
Sets the flag that controls whether or not entities are generated.

The translation from the local coordinates of the block to the container’s coordinates:

= public double getTranslateX();
Returns the x-translation.

= public void setTranslateX(double x);
Sets the x-translation.

= public double getTranslateY();
Returns the y-translation.

= public void setTranslateY(double y);
Sets the y-translation.

25.9 BlockResult

25.9.1 Overview

A carrier for the result from the draw() method in the BlockContainer class.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 256

25.9.2 Methods

= public EntityCollection getEntityCollection();
Returns the entity collection from the block drawing.

= public void setEntityCollection(EntityCollection entities);
Sets the entity collection.

25.10 BorderArrangement

25.10.1 Overview

A layout manager (Arrangement) that is similar to the BorderLayout class in AWT.

25.10.2 Constructor

To create a new instance:

= public BorderArrangement () ;
Creates a new layout manager.

25.10.3 Methods

The layout manager records the “key” for each block in the following method, which is usually
called by the BlockContainer:

= public void add(Block block, Object key);
Records the block and its key (valid keys are defined by the RectangleEdge class).

= public Size2D arrange(BlockContainer container, RectangleConstraint constraint, Graphics2D
g2);

Arranges the blocks within the container, subject to the given constraint, and returns the
overall size of the container.

= public void clear();
Clears any cached layout information.

25.11 CenterArrangement

25.11.1 Overview

An Arrangement that places a single block at the center of its container.

25.12 ColorBlock

25.12.1 Overview

A simple block that is filled with a color. This is a useful class for visual testing of layout classes.

25.12.2 Constructor

To create a new block:

= public ColorBlock(Paint paint, double width, double height);
Creates a new block with the specified “preferred” dimensions. If paint is null, this method
throws an IllegalArgumentException.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 257

25.12.3 Methods
To get the color for the block:

= public Paint getPaint(); [1.0.5]
Returns the paint specified in the constructor. This is never null.

To draw the block:

= public void draw(Graphics2D g2, Rectangle2D area);
Draws the block inside the given area.

25.12.4 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this ColorBlock for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

25.13 ColumnArrangement

25.13.1 Overview

An Arrangement that lays out the blocks in a container into columns. This is the “vertical” equivalent
of the FlowArrangement class.

25.13.2 Constructors

= public ColumnArrangement() ;
Creates a new arrangement.

w public ColumnArrangement (HorizontalAlignment hAlign, VerticalAlignment vAlign, double hGap,
double vGap);
Creates a new arrangement with the specified horizontal and vertical alignments and gaps.

25.13.3 Methods

To arrange the blocks within a container:

= public void arrange(BlockContainer container, RectangleConstraint constraint, Graphics2D
g2);
Arranges the blocks in container, subject to the given constraint.

To add a block to the layout:

= public void add(Block block, Object key);
Adds a block to the layout. The key is ignored.

To clear the blocks:

= public void clear();
Clears any cached information. In this case, the method does nothing.

25.13.4 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this arrangement for equality with an arbitrary object.

This class is immutable, so it doesn’t need to be Cloneable.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 258

25.14 EmptyBlock

25.14.1 Overview

An empty block, which can be useful for inserting fixed amounts of white space into a layout.

= public EmptyBlock(double width, double height);
Creates a new empty block with the specified “preferred” dimensions.

25.14.2 Methods

To draw the block:

= public void draw(Graphics2D g2, Rectangle2D area);
Draws the block (since the block is empty, this does nothing).

= public Object clone() throws CloneNotSupportedException;
Returns a clone of the block.

25.15 EntityBlockParams

25.15.1 Overview

To be documented.

25.16 EntityBlockResult

25.16.1 Overview

To be documented.

25.17 FlowArrangement

25.17.1 Overview

An Arrangement that lays out blocks horizontally from left to right (with wrapping if necessary).

25.17.2 Constructors

To create a new arrangement:

= public FlowArrangement () ;
Creates a new arrangement with default settings.

w public FlowArrangement (HorizontalAlignment hAlign, VerticalAlignment vAlign, double hGap,
double vGap);
Creates a new arrangement with the given alignment and gap settings.

25.17.3 Methods

To perform an arrangement on a container:

= public void arrange(BlockContainer container, RectangleConstraint constraint,
Graphics2D g2);
Arranges the blocks in the specified container according to the given constraint.

The following methods are also defined:

= public void add(Block block, Object key);
Adds a block to the arrangement. This method does nothing.

= public void clear();
Clears any cached information held by this instance.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 259

25.17.4 Equals, Cloning and Serialization

= public boolean equals(Object obj);
Tests this arrangement for equality with an arbitrary object.

25.18 GridArrangement

25.18.1 Overview

A layout manager (Arrangement) that places blocks within a fixed size grid.

25.18.2 Constructor

To create a new instance:

= public GridArrangement(int rows, int columns);
Creates a new instance with the specified number of rows and columns.

25.18.3 Methods

= public void add(Block block, Object key);
Adds a block to the layout. This method does nothing, because the grid layout doesn’t require
any information about the blocks.

= public Size2D arrange(BlockContainer container, RectangleConstraint constraint,
Graphics2D g2);
Arranges the blocks in the specified container subject to the given constraint.

See Also

FlowArrangement

25.19 LabelBlock

25.19.1 Overview

A label that can be incorporated into a block layout. For example, the series labels in a LegendTitle
are displayed using instances of this class.

25.19.2 Constructors

To create a new instance:

= public LabelBlock(String text);
Creates a new label block with the given (non-null) text and a default font (Sans Serif, PLAIN,
10) and color (black).

= public LabelBlock(String text, Font font);
Creates a new label block with the specified text, font and a default color (black). Both text
and font should be non-null.

= public LabelBlock(String text, Font font, Paint paint);
Creates a new label block with the specified text, font and paint (all of which must be non-
null).

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 260

25.19.3 Attributes
To get/set the font used for the label:

= public Font getFont();
Returns the font used for the label (never null).

= public void setFont(Font font);
Sets the font for the label (null is not permitted).

To get/set the paint used for the label text:

w public Paint getPaint();
Returns the paint used for the label text (never null). The default value is Color.BLACK.

= public void setPaint(Paint paint);
Sets the paint for the label text (null is not permitted).

To get/set the tooltip text for the label (if any):

= public String getToolTipText();
Returns the tooltip text (possibly null).

= public void setToolTipText(String text);
Sets the tooltip text (null permitted).

To get/set the URL text for the label (if any):

= public String getURLText();
Returns the URL text for the label block. This may be null.

= public void setURLText(String text);
Sets the tooltip text (null permitted).

25.19.4 Other Methods

The following methods are used by the layout and drawing mechanism in JFreeChart. You won’t
normally call them yourself.

= public Size2D arrange(Graphics2D g2, RectangleConstraint constraint);
Fits the label block to the specified constraints, and returns the dimensions.

= public void draw(Graphics2D g2, Rectangle2D area);
Draws the label within the specified area.

= public Object draw(Graphics2D g2, Rectangle2D area, Object params);
Draws the label within the specified area.

25.19.5 Equals, Cloning and Serialization

To test an instance for equality with an arbitrary object:

= public boolean equals(Object obj);
Tests this instance for equality with obj. Returns true if and only if:

® obj is not null;
e obj is an instance of LabelBlock;

e each field in this instance is the same as the corresponding field in obj.

Instances of this class are Cloneable and Serializable.

25.19.6 Notes

Some points to note:

e this class implements the Block interface, and thus supports margins, borders and padding as
do all blocks.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK

25.20 LengthConstraintType
25.20.1 Overview

This class defines three constraint types:

® LengthConstraintType.NONE;
® LengthConstraintType.FIXED;

® LengthConstraintType.RANGE;

These types are used when creating RectangleConstraint instances.

25.20.2 Methods

The following methods are implemented:

= public String toString();
Returns a string representation of the instance, primarily used for debugging.

= public boolean equals(Object obj);
Tests this instance for equality with an arbitrary object.

w public int hashCode();
Returns a hash code for the instance.

25.21 LineBorder

25.21.1 Overview

261

A simple border that can be assigned to any subclass of AbstractBlock (via that class’s setFrame ()

method). This class implements the BlockFrame interface.

25.21.2 Constructors

There are two constructors:

= public LineBorder();
Equivalent to LineBorder(Color.black, new BasicStroke(1.0f), new RectangleInsets(1.0, 1.0,
1.0, 1.0))—see the next constructor.

= public LineBorder (Paint paint, Stroke stroke, Rectanglelnsets insets);

Creates a new line border using the specified paint, stroke and insets. The insets deter-
mines how much space is reserved for the border (but note that the border is drawn regard-
less of the size of the insets). If any of the arguments is null, this constructor throws an
IllegalArgumentException.

25.21.3 General Attributes
The following read-only attributes are defined:

= public Paint getPaint(); [1.0.5]
Returns the paint that is used to draw the border. The initial value is specified in the con-
structor for this class. This method never returns null.

= public Stroke getStroke(); [1.0.5]
Returns the stroke that is used to draw the border. The initial value is specified in the con-
structor for this class. This method never returns null.

= public RectangleInsets getInsets(); [1.0.5]
Returns the insets that define the drawing space reserved for the border (never null).

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 262

25.21.4 Other Methods
JFreeChart calls the following method to draw the border:

= public void draw(Graphics2D g2, Rectangle2D area);
Draws the border around the edges of the specified area, always staying within the area.

25.21.5 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this border for equality with an arbitrary object.

Instances of this class are immutable (so this class doesn’t implement Cloneable) and Serializable.

See Also

BlockFrame.

25.22 RectangleConstraint

25.22.1 Overview

A specification of the constraints that a rectangular shape must meet. For each dimension (width
and height) there are three possible constraints: NONE, FIXED and RANGE—refer to the constant class
LengthConstraintType. These constraints are used by the layout code implemented by JFreeChart.

25.22.2 Constructors

There are several constructors:

= public RectangleConstraint(double w, double h);
Creates a new constraint where both the width and height are fixed at the given dimensions.

= public RectangleConstraint(Range w, Range h);
Creates a new constraint where the width and height must fall within the given ranges.

= public RectangleConstraint(double w, Range widthRange,

LengthConstraintType widthConstraintType, double h, Range heightRange,
LengthConstraintType heightConstraintType) ;

Creates a new constraint with the specified attributes (this method gives you full control over
all attributes). Note that the width and height ranges may be specified as null.

25.22.3 Accessor Methods

To access the attributes of this class:

= public double getWidth();
Returns the fixed width.

= public Range getWidthRange();
Returns the width range (possibly null).

= public LengthConstraintType getWidthConstraintType();
Returns the width constraint type (never null).

= public double getHeight();
Returns the fixed height.

= public Range getHeightRange();
Returns the height range (possibly null).

= public LengthConstraintType getHeightConstraintType();
Returns the height constraint type (never null).

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 263

25.22.4 Other Methods
Other methods include:

= public RectangleConstraint toUnconstrainedWidth();
Returns a new instance with the same height constraint and NO width constraint.

= public RectangleConstraint toUnconstrainedHeight();
Returns a new instance with the same width constraint and NO height constraint.

= public RectangleConstraint toFixedWidth(double width);
Returns a new instance with the same height constraint and a FIXED width constraint.

= public RectangleConstraint toFixedHeight(double height);
Returns a new instance with the same width constraint and a FIXED height constraint.

= public Size2D calculateConstrainedSize(Size2D base);
Applies the constraint to the supplied dimensions and returns the “constrained” dimensions.

= public String toString();
Returns a string representing this class, primarily for debugging purposes.

Chapter 26

Package: org.jfree.chart.editor

26.1 Introduction

This package contains a framework for editing chart properties. At present, the implementation is
incomplete. The API is minimalistic, in the hope that it will be possible to plug in a more complete
implementation later on without requiring major changes to the API.

26.2 ChartEditor

26.2.1 Overview

An interface that defines the API that needs to be supported by a chart editor. A chart editor
should be a subclass of JComponent.

26.2.2 Methods

This interface defines a single method:

= public void updateChart(JFreeChart chart);
Applies the updates that the user has made via the chart editor to the given chart.

26.2.3 Notes

To obtain a chart editor, use the getChartEditor() method in the ChartEditorManager class.

26.3 ChartEditorFactory

26.3.1 Overview

An interface that defines the API that needs to be supported by a chart editor factory, a class
that creates new instances of ChartEditor. The ChartEditorManager class maintains a factory for
creating new editors—you can replace the default factory with your own custom factory if you want
to install your own chart editor.

26.3.2 Methods

This interface defines a single method:

= public ChartEditor createEditor(JFreeChart chart);
Creates a new editor for the given chart.

264

CHAPTER 26. PACKAGE: ORG.JFREE.CHART.EDITOR 265

26.3.3 Notes

The DefaultChartEditorFactory class provides the default implementation of this interface.

26.4 ChartEditorManager

26.4.1 Overview

This class is the central source for new ChartEditor instances. You can use the default chart editor
(which is incomplete at this time) or install your own ChartEditorFactory class to return your own
custom chart editor.

26.4.2 Methods

This class defines several static methods:

= public static ChartEditorFactory getChartEditorFactory();
Returns the current chart editor factory.

= public static void setChartEditorFactory(ChartEditorFactory f);
Sets the chart editor factory. This allows you to install a custom chart editor implementation,
since the getChartEditor () method will return an editor created by the installed factory.

= public static ChartEditor getChartEditor (JFreeChart chart);
Returns a chart editor for the given chart. The editor is created by the installed chart editor
factory (which you can change via the setChartEditorFactory() method.

26.4.3 Notes

This package contains default implementations of ChartEditorFactory and ChartEditor. These
classes are not publicly visible and are subject to change.

26.5 DefaultAxisEditor

26.5.1 Overview

A panel for editing the properties of an axis.

The code for this panel is out of date. Many features are missing, and some of the existing features
may not work. It is planned to rewrite this class.

26.6 DefaultChartEditor

26.6.1 Overview

A panel that displays all the properties of a chart, and allows the user to edit the properties. The
panel uses a JTabbedPane to display three sub-panels:

® a DefaultTitleEditor;
® a DefaultPlotEditor;

e a panel containing “other” properties (such as the anti-alias setting and the background paint
for the chart).

The constructors for this class require a reference to a Dialog or a Frame. Whichever one is specified
is passed on to the DefaultTitleEditor and is used if and when a sub-dialog is required for editing
titles.

CHAPTER 26. PACKAGE: ORG.JFREE.CHART.EDITOR

{_ yenaneroperties e e —

[Vl Show tick labels

[v] Show tick marks

Tick label font: Sansserif. plain, 10

((Legend | Plot | Other |
~XY Plot
(‘Domain Axis | Range Axis | Appearance |
General:
Label: [Price Per Unit |
Font: sansserif plain, 12 || select.
Paint I | Select..
Label Insets: [T:2, L3 B3, R 2 || Edit.
Tick Label Insets: [T: 2, L 4, 82, R 4 || Edit.
~Other
[Ticks | Range |

J

Select..

26.6.2 Notes

This class is not publicly visible and its API is subject to change.

26.7 DefaultChartEditorFactory

26.7.1 Overview

A default factory used by the ChartEditorManager class.

26.7.2 Constructors

To create a new instance:

= public DefaultChartEditorFactory();
Creates a new factory instance.

26.7.3 Methods

To create a new chart editor:

= public ChartEditor createEditor(JFreeChart chart);
Creates a new editor for the given chart.

26.7.4 Notes

266

The ChartEditorManager class installs an instance of this class as the default chart editor factory.

26.8 DefaultColorBarEditor

26.8.1 Overview

A panel for editing the properties of a ColorBar. This class is deprecated as of version 1.0.4.

CHAPTER 26. PACKAGE: ORG.JFREE.CHART.EDITOR

26.9 DefaultNumberAxisEditor

26.9.1 Overview

A panel for displaying and editing the properties of a NumberAxis.

26.10 DefaultPlotEditor

26.10.1 Overview

A panel for displaying and editing the properties of a plot.

(_ yomartProperties e —0

((Legend | Piot | Other |
~X¥ Plot:
Appearance |
General:

Insets:
Qutline stroke:

Qutline paint:

Background paint: [

T4 Lg B4R E

[e |

0 Select..
T | select...

oo |

Cancel

Figure 26.1: The plot property editor

267

The code for this panel is out of date. Many features are missing, and some of the existing features
may not work. It is planned to rewrite this class.

26.11 DefaultTitleEditor

26.11.1 Overview

A panel for displaying and editing the properties of a chart title. The code for this panel is out of
date. Many features are missing, and some of the existing features may not work. It is planned to

rewrite this class.

26.12 PaletteChooserPanel

26.12.1 Overview

A panel for selecting a color palette. This class is deprecated as of version 1.0.4.

CHAPTER 26. PACKAGE: ORG.JFREE.CHART.EDITOR 268

26.13 PaletteSample

26.13.1 Overview

This class is deprecated as of version 1.0.4.

Chapter 27

Package: org.jfree.chart.encoders

27.1 Introduction

The org. jfree.chart.encoders package provides a mechanism to allow encoders from Java’s Image
IO framework to be used where they are available (JDK 1.4 onwards) while ensuring that alternative
encoders are provided as a fallback in other cases (that is, on JDK 1.3).

This mechanism is employed by several methods in the ChartUtilities class, for example write-
ChartAsPNG() and writeChartAsJPEG().

27.2 EncoderUtil

27.2.1 Overview

A utility class containing static methods for encoding images in several formats (PNG and JPEG
are supported in most cases). The methods in this class are called by the ChartUtilities class, and
make use of encoders pre-configured in the ImageEncoderFactory class.

27.2.2 Methods

To encode an image:

= public static byte[] encode(BufferedImage image, String format);
Returns a byte array containing an encoded version of the image in the specified format.

= public static byte[] encode(BufferedImage image, String format,

boolean encodeAlpha) throws IOException;

Returns a byte array containing an encoded version of the image in the specified format. The
encodeAlpha flag determines whether or not an alpha channel is included in the encoded image
(assuming the format supports this).

= public static byte[] encode(BufferedImage image, String format,

float quality) throws IOException;

Returns a byte array containing an encoded version of the image in the specified format. The
quality argument controls the image quality (for encoders that support this).

= public static byte[] encode(BufferedImage image, String format,

float quality, boolean encodeAlpha);

Returns a byte array containing an encoded version of the image in the specified format. The
encodeAlpha flag determines whether or not an alpha channel is included in the encoded image
(assuming the format supports this). The quality argument controls the image quality (for
encoders that support this).

To write an image to an output stream:

269

CHAPTER 27. PACKAGE: ORG.JFREE.CHART.ENCODERS 270

= public static void writeBufferedImage(BufferedImage image, String format,
OutputStream outputStream) throws IOException;
Writes an image to the given output stream in the specified format.

= public static void writeBufferedImage(BufferedImage image, String format,
OutputStream outputStream, float quality) throws IOException;
Writes an image to the given output stream in the specified format.

w public static void writeBufferedImage(BufferedImage image, String format,
OutputStream outputStream, boolean encodeAlpha) throws IOException;
Writes an image to the given output stream in the specified format.

= public static void writeBufferedImage(BufferedImage image, String format,
OutputStream outputStream, float quality, boolean encodeAlpha) throws IOException;
Writes an image to the given output stream in the specified format.

See Also

ChartUtilities.

27.3 ImageEncoderFactory

27.3.1 Overview

A factory class for image encoders. The static initialisation code in this class checks if we are
running on JRE 1.4.2 or later. If yes, then the following encoders are pre-configured:

e “png”: org.jfree.chart.encoders.SunPNGEncoderAdapter;

e “jpeg’: org.jfree.chart.encoders.SunJPEGEncoderAdapter;

Otherwise, JRE 1.3.1 must be the runtime. In that case, Java’s ImagelO library is not available
and we register the KeyPoint PNG encoder:

e “png”: org.jfree.chart.encoders.KeypointPNGEncoderAdapter;

27.3.2 Methods

The following method is used to register an encoder with the factory (note that JFreeChart pre-
installs PNG and JPEG encoders):

= public static void setImageEncoder(String format, String imageEncoderClassName) ;
Adds a mapping between a format name (for example, “png”) and an encoder class name (for
example, “org.jfree.chart.encoders.SunPNGEncoderAdapter”).

Use the following methods to obtain an encoder:

= public static ImageEncoder newInstance(String format);
Returns a new instance of an encoder for the given format.

= public static ImageEncoder newlInstance(String format, float quality);
Returns a new instance of the encoder for the given format and the specified quality setting
(in the range 0.0f (lowest quality) to 1.0f (highest quality).

= public static ImageEncoder newInstance(String format, boolean encodingAlpha);
Returns a new instance of the encoder for the given format and the specified encodeAlpha flag.

= public static ImageEncoder newInstance(String format, float quality, boolean encodingAlpha);
Returns a new instance of the encoder for the given format and the specified quality and
encodeAlpha flag settings.

See Also

EncoderUtil.

CHAPTER 27. PACKAGE: ORG.JFREE.CHART.ENCODERS 271

27.4 ImageEncoder
27.4.1 Overview

An interface that provides an abstract view of the image encoders supported by this package.
Classes that implement this interface include:

® KeypointPNGEncoderAdapter,
o SunJPEGEncoderAdapter;

o SunPNGEncoderAdapter.

27.4.2 Methods

To encode an image:

= public byte[] encode(BufferedImage bufferedImage) throws IOException;
Returns a byte array containing an encoded version of the given image.

= public void encode(BufferedImage bufferedImage, OutputStream outputStream) throws IOException;
Writes an encoded version of an image to the given output stream.

To control the quality for the encoding (typically there is a trade-off between image size and quality):

= public float getQuality();
Returns the image quality setting.

= public void setQuality(float quality);
Sets the quality. Note that some encoders ignore the quality setting.

To control whether or not the encoding should support an alpha-transparency channel:

= public boolean isEncodingAlpha();
Returns the flag that controls whether or not the alpha channel is encoded with the image
(note that some encoders ignore this setting).

= public void setEncodingAlpha(boolean encodingAlpha);
Sets the flag that controls whether or not the alpha channel is encoded with the image.

See Also

ImageEncoderFactory.

27.5 ImageFormat

27.5.1 Overview

An interface that defines string constants used to identify several common image formats:
® ImageFormat.PNG for the PNG format,
e ImageFormat.JPEG for the JPEG format,
® ImageFormat.GIF for the GIF format.

You can use these constants in the methods provided by the EncoderUtil class.

27.6 KeyPointPNGEncoderAdapter

27.6.1 Overview

An adapter for the com.keypoint.PNGEncoder included in the JCommon distribution. This adapter
will be used when JFreeChart is compiled or run with JDK/JRE 1.3.1 (in this case, the ImagelO
framework is not available).

CHAPTER 27. PACKAGE: ORG.JFREE.CHART.ENCODERS 272

27.6.2 Methods
To set the image quality:

= public float getQuality();
Returns the quality setting for the encoder. The default value is 9.

= public void setQuality(float quality);
Sets the quality setting for the encoder. Since PNG is a “lossless” format, the image is al-
ways encoded without loss of quality. This setting in fact controls the amount of compression
achieved. The underlying encoder uses integer codes as follows:

e 0 — no compression,

e 1 — best speed,

e 9 — best compression.
Note that any value between 1 and 9 is also permitted.

To set the flag that controls whether or not the alpha channel is encoded:

= public boolean isEncodingAlpha();
Returns the flag that controls whether or not the alpha channel is included in the encoded
image.

= public void setEncodingAlpha(boolean encodingAlpha);
Sets the flag that controls whether or not the alpha channel is included in the encoded image.

To encode an image to a byte array:

= public byte[] encode(BufferedImage bufferedImage) throws IOException;
Returns a byte array containing an encoded version of the given image. The encoding uses the
current quality and encodeAlpha settings.

To write an encoded version of an image to an output stream:

= public void encode(BufferedImage bufferedImage, OutputStream outputStream) throws IOException;
Writes a byte array (containing an encoded version of the given image) to the specified output
stream. The encoding uses the current quality and encodeAlpha settings. Note that the entire
image is encoded to a byte array first, before writing the bytes to the output stream—for large
images this can use a lot of memory.

See Also
SunPNGEncoderAdapter.

27.7 SunJPEGEncoderAdapter

27.7.1 Overview

An encoder for the JPEG image file format that uses Java’s ImagelO framework to perform the
encoding. This encoder is only available when JFreeChart is compiled and run using JDK/JRE
1.4.2 or later. The Ant build script excludes it from the build when using JDK 1.3.1, in which case
the methods that write charts to JPEG format will throw exceptions. Since JPEG is such a rotten
format for charts, this is no great loss.

27.7.2 Methods
The quality setting is ignored by this encoder:

= public float getQuality();
Returns the quality setting.

= public void setQuality(float quality);
Sets the quality setting.

CHAPTER 27. PACKAGE: ORG.JFREE.CHART.ENCODERS 273

The alpha encoding flag is ignored by this encoder:

= public boolean isEncodingAlpha();
Returns false always.

= public void setEncodingAlpha(boolean encodingAlpha);
Any value passed to this method is ignored.

To encode an image:

= public byte[] encode(BufferedImage bufferedImage) throws IOException;
Returns a byte array containing a version of the given image encoded in JPEG format by Java’s
ImagelO framework.

= public void encode(BufferedImage bufferedImage, OutputStream outputStream) throws IOException;
Writes an image to the given output stream (in JPEG format) using Java’s ImagelO framework.

27.8 SunPNGEncoderAdapter

27.8.1 Overview

An encoder for the PNG image file format that uses Java’s ImagelO framework to perform the
encoding. This encoder is only available when JFreeChart is compiled and run using JDK/JRE
1.4.2 or later. The Ant build script excludes it from the build when using JDK 1.3.1, in which case
the KeypointPNGEncoderAdapter is used instead.

27.8.2 Methods
The quality setting is ignored by this encoder:

= public float getQuality();
Returns 0.0f always, the encoder does not support the quality setting.

w public void setQuality(float quality);
Any value passed to this method is ignored, the encoder does not support the quality setting.

The alpha encoding flag is ignored by this encoder:

= public boolean isEncodingAlpha();
Returns false always.

= public void setEncodingAlpha(boolean encodingAlpha);
Any value passed to this method is ignored.

To encode an image:

= public byte[] encode(BufferedImage bufferedImage) throws IOException;
Returns a byte array containing a version of the given image encoded in PNG format by Java’s
ImagelO framework.

= public void encode(BufferedImage bufferedImage, OutputStream outputStream) throws IOException;
Writes an image to the given output stream (in PNG format) using Java’s ImagelO framework.

See Also
KeypointPNGEncoderAdapter.

Chapter 28

Package: org.jfree.chart.entity

28.1 Introduction

The org.jfree.chart.entity package contains classes that represent entities in a chart. Entities
provide information about the physical location of items in a chart that has been drawn, as well as
optional data such as tool tip text and URL strings. This information is used for several purposes,
including the generation of HTML image maps and the linking of mouse events (from a ChartPanel)
to specific chart entities.

28.2 Background

Recall that when you render a chart to a Graphics2D using the draw() method in the JFreeChart
class, you have the option of supplying a ChartRenderingInfo object to collect information about
the chart’s dimensions. Most of this information is represented in the form of ChartEntity objects,
stored in an EntityCollection.

You can use the entity information in any way you choose. For example, the ChartPanel class makes
use of the information for:

e displaying tool tips;
e handling chart mouse events.

It is more than likely that other applications for this information will be found.

28.3 AxisEntity

28.3.1 Overview

An entity that represents an axis on a chart. This class extends ChartEntity. In typical usage, you
might come across an instance of this class via the getEntity() method of the ChartMouseEvent class
(which only applies if you are displaying charts in a Swing application using a ChartPanel).

This class was first introduced in JFreeChart version 1.0.13.

28.3.2 Constructors

To construct a new instance:

= public AxisEntity(Shape area, Axis axis); [1.0.13]
Equivalent to AxisEntity(area, axis, null)—see the next constructor.

274

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.ENTITY 275

= public AxisEntity(Shape area, Axis axis, String toolTipText); [1.0.13]
Equivalent to AxisEntity(area, axis, toolTipText, null)—see the next constructor.

= public AxisEntity(Shape area, Axis axis, String toolTipText, String urlText); [1.0.13]
Creates an entity representing the specified axis and with the specified tooltip and URL at-
tributes (either of which may be nul1).

28.3.3 Methods
In addition to the methods inherited from the ChartEntity class, this class defines the following:

= public Axis getAxis(); [1.0.13]
Returns the axis represented by this entity.

w public String toString(); [1.0.13]
Returns a string representation of this instance, this is used primarily for debugging purposes.

28.3.4 Equals, Cloning and Serialization

This class overrides the equals(0Object) method:

= public boolean equals(Object obj);
Tests this entity for equality with an arbitrary object.

Instances of this class are cloneable (PublicCloneable is implemented) and serializable.

See Also

ChartEntity.

28.4 CategoryltemEntity

28.4.1 Overview

This class is used to convey information about a data item within a category plot. The information
captured includes the dataset containing the item, the series and category identifying the item, area
occupied by the item (at the time the chart was rendered), and the tool tip and URL text (if any)
generated for the item. In typical usage, you might come across an instance of this class via the
getEntity() method of the ChartMouseEvent class (which only applies if you are displaying charts
in a Swing application using a ChartPanel).

28.4.2 Constructors

To construct a new instance:

= public CategoryIltemEntity(Shape area, String toolTipText, String urlText,
CategoryDataset dataset, Comparable rowKey, Comparable columnKey); [1.0.6]
Creates a new entity instance.

The original constructor has been deprecated as of JFreeChart 1.0.6, and will be removed in a
future release.

28.4.3 Methods
In addition to the methods inherited from the ChartEntity class:

= public CategoryDataset getDataset();
Returns a reference to the dataset (never null).

= public void setDataset(CategoryDataset dataset);
Sets the dataset reference for this entity (null is not permitted).

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.ENTITY 276

To identify the data item:

= public Comparable getRowKey(); [1.0.6]
Returns the row key for the data item.

= public void setRowKey(Comparable rowKey); [1.0.6]
Sets the row key for the data item.

= public Comparable getColumnKey(); [1.0.6]
Returns the column key for the data item.

= public void setColumnKey(Comparable columnKey); [1.0.6]
Sets the column key for the data item.

The original index-based methods for identifying the data item have been deprecated:

w public int getSeries(); [Deprecated, 1.0.6]
Returns the index of the series containing the item that this entity represents.

= public void setSeries(int series); [Deprecated, 1.0.6]
Sets the index of the series containing the item that this entity represents.

= public Object getCategory(); [Deprecated, 1.0.6]
Returns the category containing the item that this entity represents. This may be null.

= public void setCategory(Object category); [Deprecated, 1.0.6]
Sets the category containing the item that this entity represents.

= public int getCategoryIndex(); [Deprecated, 1.0.6]
Returns the index of the category containing the item that this entity represents.

= public void setCategoryIndex(int index); [Deprecated, 1.0.6]
Sets the index of the category containing the item that this entity represents.

For debugging purposes, this class overrides the toString() method:

= public String toString();
Returns a string representation of this CategoryItemEntity, typically used when debugging.

28.4.4 Equals, Cloning and Serialization

This class overrides the equals(0Object) method:

= public boolean equals(Object obj);
Tests this entity for equality with an arbitrary object.

Instances of this class are cloneable (PublicCloneable is implemented) and serializable.

28.4.5 Notes
Most CategoryItemRenderer implementations will generate entities using this class, as required.

See Also
ChartEntity, CategoryPlot.

28.5 CategoryLabelEntity

28.5.1 Overview

An entity that represents a label on a category axis. This class extends TickLabelEntity. In
typical usage, you might come across an instance of this class via the getEntity() method of the
ChartMouseEvent class (which only applies if you are displaying charts in a Swing application using
a ChartPanel).

This class was first introduced in JFreeChart version 1.0.3.

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.ENTITY 277

28.5.2 Constructors

To construct a new instance:

= public CategoryLabelEntity(Comparable key, Shape area, String toolTipText, String urlText));
[1.0.3]

Creates an entity representing the specified category label and with the specified tooltip and
URL attributes (either of which may be null).

28.5.3 Methods

In addition to the methods inherited from the TickLabelEntity class, this class defines the following:

= public Comparable getKey(); [1.0.3]
Returns the category key represented by this entity.

= public String toString(); [1.0.3]
Returns a string representation of this instance, this is used primarily for debugging purposes.

28.5.4 Equals, Cloning and Serialization

This class overrides the equals(0Object) method:

= public boolean equals(Object obj);
Tests this entity for equality with an arbitrary object.

Instances of this class are Cloneable, PublicCloneable and Serializable.

See Also
TickLabelEntity.

28.6 ChartEntity

28.6.1 Overview

This class is used to convey information about an entity within a chart. The information captured
includes the area occupied by the item and the tool tip text generated for the item.

There are a number of subclasses that can be used to provide additional information about a chart
entity.

ChartEntity

#area: Shape
#toolTipText: String

T

[| |

PieSectionEntity CategoryltemEntity XYltemEntity
#category: Object #series: int #series: int
#category: Object #item: int

Figure 28.1: Chart entity classes

28.6.2 Constructors

To construct a new instance:

= public ChartEntity(Shape area, String toolTipText);

Creates a new chart entity object. The area is specified in Java 2D space.
Chart entities are created by other classes in the JFreeChart library, you don’t usually need to
create them yourself.

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.ENTITY 278

28.6.3 Methods

Accessor methods are implemented for the area and toolTipText attributes.

To support the generation of HTML image maps, the getShapeType() method returns a String
containing either RECT or POLY, and the getShapeCoords() method returns a String containing the
coordinates of the shape’s outline. See the ChartUtilities class for more information about HTML
image maps.

28.6.4 Notes

The ChartEntity class records where an entity has been drawn using a Graphics2D instance. Chang-
ing the attributes of an entity won’t change what has already been drawn.

See Also
CategoryltemEntity, PieSectionEntity, XYItemEntity.

28.7 ContourEntity

28.7.1 Overview

This class is deprecated as of JFreeChart version 1.0.4. Contour plots should be created using an
XYPlot with an XYBlockRenderer, rather than using the ContourPlot class.

See Also

ContourPlot.

28.8 EntityCollection

28.8.1 Overview

An interface that defines the API for a collection of chart entities. This is used by the Chart-
RenderingInfo class to record where items have been drawn when a chart is rendered using a
Graphics2D instance.

Each ChartEntity can also record tool tip information (for displaying tool tips in a Swing user
interface) and/or URL information (for generating HTML image maps).

28.8.2 Methods

The interface defines three methods. To clear a collection:

= public void clear();
Clears the collection. All entities in the collection are discarded.

To add an entity to a collection:

= public void addEntity(ChartEntity entity);
Adds an entity to the collection.

To retrieve an entity based on Java 2D coordinates:

= public ChartEntity getEntity(double x, double y);
Returns an entity whose area contains the specified coordinates. If the coordinates fall within
the area of multiple entities (the entities overlap) then only one entity is returned.

28.8.3 Notes

The StandardEntityCollection class provides a basic implementation of this interface (but one that
won'’t scale to large numbers of entities).

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.ENTITY 279

See Also
ChartEntity, StandardEntityCollection.

28.9 JFreeChartEntity

28.9.1 Overview

An entity that represents the entire area of a chart. This class extends ChartEntity. In typical usage,
you might come across an instance of this class via the getEntity() method of the ChartMouseEvent
class (which only applies if you are displaying charts in a Swing application using a ChartPanel).

This class was first introduced in JFreeChart version 1.0.13.

28.9.2 Constructors

To construct a new instance:

= public JFreeChartEntity(Shape area, JFreeChart chart); [1.0.13]
Equivalent to JFreeChartEntity(area, chart, null)—see the next constructor.

= public JFreeChartEntity(Shape area, JFreeChart chart, String toolTipText); [1.0.13]
Equivalent to JFreeChartEntity(area, chart, toolTipText, null)—see the next constructor.

= public JFreeChartEntity(Shape area, JFreeChart chart, String toolTipText,

String urlText); [1.0.13]

Creates an entity representing the specified chart and with the specified tooltip and URL
attributes (either of which may be null).

28.9.3 Methods

In addition to the methods inherited from the ChartEntity class, this class defines the following:

w public JFreeChart getChart(); [1.0.13]
Returns the chart represented by this entity.

= public String toString(); [1.0.13]
Returns a string representation of this instance, this is used primarily for debugging purposes.

28.9.4 Equals, Cloning and Serialization

This class overrides the equals(0Object) method:

= public boolean equals(Object obj);
Tests this entity for equality with an arbitrary object.

Instances of this class are Cloneable, PublicCloneable and Serializable.

See Also
ChartEntity.

28.10 LegendltemEntity

28.10.1 Overview

An entity that records information about a legend item. This class extends ChartEntity. In typ-
ical usage, you might come across an instance of this class via the getEntity() method of the
ChartMouseEvent class (which only applies if you are displaying charts in a Swing application using
a ChartPanel).

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.ENTITY 280

28.10.2 Constructor

To create a new LegendItemEntity:

= public LegendItemEntity(Shape area);
Creates a new legend item with the specified hotspot.

28.10.3 Methods

The legend item is associated with a dataset and a series key:

= public Dataset getDataset(); [1.0.6]
Returns the dataset for the legend item.

= public void setDataset(Dataset dataset); [1.0.6]
Sets the dataset for the legend item.

= public Comparable getSeriesKey(); [1.0.6]
Returns the series key for the legend item.

= public void setSeriesKey(Comparable key); [1.0.6]
Sets the series key for the legend item.

To access the index of the series that the legend item relates to:

= public int getSeriesIndex(); [Deprecated, 1.0.6]
Returns the index of the series that the legend item entity relates to.

= public void setSeriesIndex(int index); [Deprecated, 1.0.6]
Sets the index of the series that the legend item entity relates to.

28.10.4 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this entity for equality with an arbitrary object.

To obtain a clone of the entity:

= public Object clone() throws CloneNotSupportedException;
Returns a clone of the entity.

See Also
ChartEntity.

28.11 PieSectionEntity

28.11.1 Overview

This class is used to convey information about an item within a pie plot. The information captured
includes the area occupied by the item, the dataset, pie and section indices, and the tool tip and
URL text (if any) generated for the item. In typical usage, you might come across an instance of
this class via the getEntity() method of the ChartMouseEvent class (which only applies if you are
displaying charts in a Swing application using a ChartPanel).

28.11.2 Constructors

To construct a new instance:

= public PieSectionEntity(Shape area, PieDataset dataset, int pieIndex, int sectionIndex,
Comparable sectionKey, String toolTipText, String urlText);
Creates a new entity object.

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.ENTITY 281

28.11.3 Methods

Accessor methods are implemented for the dataset, pieIndex, sectionIndex and sectionKey at-
tributes. Other methods are inherited from the ChartEntity class.

28.11.4 Notes

The PiePlot class generates pie section entities as required.

See Also
ChartEntity, PiePlot.

28.12 PlotEntity

28.12.1 Overview

An entity that represents a plot. This class extends ChartEntity. In typical usage, you might come
across an instance of this class via the getEntity () method of the ChartMouseEvent class (which only
applies if you are displaying charts in a Swing application using a ChartPanel).

This class was first introduced in JFreeChart version 1.0.13.

28.12.2 Constructors

To construct a new instance:

= public PlotEntity(Shape area, Plot plot); [1.0.13]
Equivalent to PlotEntity(area, plot, null)—see the next constructor.

= public PlotEntity(Shape area, Plot plot, String toolTipText); [1.0.13]
Equivalent to PlotEntity(area, plot, toolTipText, null)—see the next constructor.

= public PlotEntity(Shape area, Plot plot, String toolTipText, String urlText); [1.0.13]
Creates an entity representing the specified plot and with the specified tooltip and URL at-
tributes (either of which may be nul1).

28.12.3 Methods
In addition to the methods inherited from the ChartEntity class, this class defines the following:

= public Plot getPlot(); [1.0.13]
Returns the plot represented by this entity.

w public String toString(); [1.0.13]
Returns a string representation of this instance, this is used primarily for debugging purposes.

28.12.4 Equals, Cloning and Serialization

This class overrides the equals(0Object) method:

= public boolean equals(Object obj);
Tests this entity for equality with an arbitrary object.

Instances of this class are Cloneable, PublicCloneable and Serializable.

See Also

ChartEntity.

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.ENTITY 282

28.13 StandardEntityCollection

28.13.1 Overview

A basic implementation of the EntityCollection interface. This class can be used (optionally, by
the ChartRenderingInfo class) to store a collection of chart entity objects from one rendering of a
chart. The entities can be used to support tool-tips, drill-down charts and HTML image maps.

28.13.2 Constructor

To create a new collection:

= public StandardEntityCollection();
Creates a new (empty) collection.

28.13.3 Methods
The following methods are supported by this class:

= public void add(ChartEntity entity);
Adds a chart entity to the collection. This method throws an IllegalArgumentException if
entity is null.

= public void addAll(EntityCollection collection);
Adds all the entities from the specified collection to this collection. This method throws a
NullPointerException if collection is null.

= public int getEntityCount();
Returns the number of entities stored in the collection.

= public ChartEntity getEntity(int index);
Returns a chart entity from the specified position in the collection.

= public void clear();
Clears all the entities from the collection.

w public ChartEntity getEntity(double x, double y);
Returns an entity from the collection that has a “hot-spot” that contains the specified (x, y)
location (in Java2D space).

= public Collection getEntities();
Returns an unmodifiable collection containing the entities.

= public Iterator iterator();
Returns an iterator for the entities in the collection.

28.13.4 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this entity collection for equality with an arbitrary object.

= public Object clone() throws CloneNotSupportedException
Returns a deep clone of this collection (each entity in the collection is cloned).

28.13.5 Notes

The getEntity() method iterates through the entities searching for one that contains the specified
coordinates. For charts with a large number of entities, a more efficient approach will be required.’

1This is on the to-do list but, given the size of the to-do list, I'm hopeful that someone will contribute code to
address this.

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.ENTITY 283

See Also
ChartEntity, EntityCollection.

28.14 TickLabelEntity

28.14.1 Overview

An entity that records information about a tick label. Subclasses include CategoryLabelEntity.

28.15 TitleEntity

28.15.1 Overview

An entity that represents a chart title. This class extends ChartEntity. In typical usage, you might
come across an instance of this class via the getEntity () method of the ChartMouseEvent class (which
only applies if you are displaying charts in a Swing application using a ChartPanel).

This class was first introduced in JFreeChart version 1.0.13.

28.15.2 Constructors

To construct a new instance:

= public TitleEntity(Shape area, Title title); [1.0.13]
Equivalent to TitleEntity(area, title, null)—see the next constructor.

w public TitleEntity(Shape area, Title title, String toolTipText); [1.0.13]
Equivalent to TitleEntity(area, title, toolTipText, null)—see the next constructor.

= public TitleEntity(Shape area, Title title, String toolTipText, String urlText); [1.0.13]
Creates an entity representing the specified title and with the specified tooltip and URL at-
tributes (either of which may be null).

28.15.3 Methods

In addition to the methods inherited from the ChartEntity class, this class defines the following:

= public Title getTitle(); [1.0.13]
Returns the title represented by this entity.

= public String toString(); [1.0.13]
Returns a string representation of this instance, this is used primarily for debugging purposes.
28.15.4 Equals, Cloning and Serialization

This class overrides the equals(0Object) method:

= public boolean equals(Object obj);
Tests this entity for equality with an arbitrary object.

Instances of this class are Cloneable, PublicCloneable and Serializable.

See Also
ChartEntity.

28.16 XYAnnotationEntity

28.16.1 Overview

An entity that represents an XYAnnotation.

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.ENTITY 284

28.16.2 Constructor

To create a new instance:

= public XYAnnotationEntity(Shape hotspot, int rendererIndex, String toolTipText,

String urlText);

Creates a new entity with the specified hotspot. The renderer index denotes the renderer to
which the annotation belongs.

28.16.3 Methods
In addition to the methods inherited from ChartEntity, this class defines the following:

= public int getRendererIndex();
Returns the index of the renderer to which the annotation is assigned.

= public void setRendererIndex(int index);
Sets the index of the renderer to which the annotation is assigned.

28.16.4 Equals, Cloning and Serialization
This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this entity for equality with an arbitrary object.

28.17 XYItemEntity

28.17.1 Overview

This class is used to convey information about an item within an XY plot. The information captured
includes the area occupied by the item, the tool tip text generated for the item, and the series and
item index.

28.17.2 Constructors

To construct a new instance:

w public XYItemEntity(Shape area, XYDataset dataset, int series, int item, String toolTipText,
String urlText);
Creates a new entity object.

28.17.3 Methods

Accessor methods are implemented for the dataset, series and item attributes. Other methods are
inherited from the ChartEntity class.

28.17.4 Notes

Most XYItemRenderer implementations will generate entities using this class, as required.

See Also
ChartEntity, XYPlot.

Chapter 29

Package: org.jfree.chart.event

29.1 Introduction

This package contains classes and interfaces that are used to broadcast and receive events relating
to changes in chart properties. By default, some of the classes in the library will automatically
register themselves with other classes, so that they receive notification of any changes and can react
accordingly. For the most part, you can simply rely on this default behaviour.

29.2 AxisChangeEvent

29.2.1 Overview

An event that can be sent to an AxisChangeListener to provide information about a change to an
axis. Almost every axis update will trigger an AxisChangeEvent, and the event is typically forwarded
to the plot that is currently managing the axis. This class extends ChartChangeEvent.

29.2.2 Constructors

This class defines a single constructor:

= public AxisChangeEvent (Axis axis);
Creates a new event whose source is the specified axis.

29.2.3 Methods
In addition to the methods inherited from ChartChangeEvent, this class defines the following:

w public Axis getAxis();
Returns the axis that is the source of this event (as specified in the constructor).

29.2.4 Notes

Some points to note:

e often, the only information provided by the event is that some change has been made to the
axis (that is, the specific change is not identified);

e when a chart is displayed in a ChartPanel, any AxisChangeEvent will trigger a chain of events
that results in the chart on the panel being repainted.

See Also

AxisChangeListener.

285

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.EVENT 286

29.3 AxisChangeListener

29.3.1 Overview

An interface through which axis change event notifications are posted.

29.3.2 Methods

The interface defines a single method:

= public void axisChanged(AxisChangeEvent event);
Receives notification of a change to an axis.

29.3.3 Notes
Some points to note:

e if a class needs to receive notification of changes to an axis, then it needs to implement this
interface and register itself with the axis;

e the plot classes that manage axes (for example, CategoryPlot and XYPlot) implement this inter-
face to listen for changes to the axes, and typically respond by generating a PlotChangeEvent.

See Also

AxisChangeEvent.

29.4 ChartChangeEvent

29.4.1 Overview

An event that is used to provide information about changes to a chart. You can register an object
with a JFreeChart instance, provided that the object implements the ChartChangeListener interface,
and it will receive a notification whenever the chart changes.

29.4.2 Constructors

The following constructors are defined:

= public ChartChangeEvent(Object source);
Creates a new event generated by the given source.

= public ChartChangeEvent(Object source, JFreeChart chart);
Creates a new event generated by the given source for the given chart (the source and chart
may be the same).

= public ChartChangeEvent(Object source, JFreeChart chart, ChartChangeEventType type);
Creates a new event with the specified type.

29.4.3 Methods
The following methods are defined:

= public JFreeChart getChart();
Returns the chart that the event relates to.

= public void setChart(JFreeChart chart);
Sets the chart for the event.

= public ChartChangeEventType getType();
Returns the event type.

= public void setType(ChartChangeEventType type);
Sets the event type.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.EVENT 287

29.4.4 Notes

The ChartPanel class automatically registers itself with the chart it is displaying. When it receives
a ChartChangeEvent, it repaints the chart.

29.5 ChartChangeEventType

29.5.1 Overview

This class defines the tokens that can be used to specify the “type” for a ChartChangeEvent.

Token: ‘ Description:
ChartChangeEventType.GENERAL A general event.
ChartChangeEventType . NEW_DATASET An event that signals that a new dataset has

been added to the chart.
ChartChangeEventType .DATASET_UPDATED | An event that signals that a dataset has been
updated.

Table 29.1: ChartChangeEventType tokens

The intent behind specifying event types is to allow JFreeChart to react in special ways to particular
events. For example, an updated dataset may not require a chart redraw if the data that changed
is outside the visible data range. However, there is currently no code in JFreeChart that takes
advantage of the event type.

29.6 ChartChangeListener

29.6.1 Overview

An interface through which chart change event notifications are posted.

29.6.2 Methods

The interface defines a single method:

= public void chartChanged(ChartChangeEvent event);
Receives notification of a change to a chart.

29.6.3 Notes
Some points to note:

e if a class needs to receive notification of changes to a chart, then it needs to implement this
interface and register itself with the chart;

e the ChartPanel class implements this interface, and repaints the chart whenever a change
event is received.

29.7 ChartProgressEvent

29.7.1 Overview

An event that contains information about the progress made during the rendering of a chart. Any
class that implements the ChartProgressListener interface can register with the JFreeChart class
and receive these events during chart rendering.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.EVENT 288

29.7.2 Constructor

To create a new event:

= public ChartProgressEvent(Object source, JFreeChart chart, int type, int percent);
Creates a new event with the given attributes. The source may be the chart, or some subcom-
ponent of the chart. The type identifies the event type, defined values include DRAWING_STARTED
and DRAWING_FINISHED (others may be added in the future). The percent is an estimate of the
amount of progress, in the range 0 to 100.

Typically, user code will receive events that have been constructed by JFreeChart, and won’t need
to create new event instances.

29.7.3 Methods

Accessor methods are provided for the event’s attributes:

= public JFreeChart getChart();
Returns the chart that the event relates to.

= public void setChart(JFreeChart chart);
Sets the chart that the event belongs to (this should not be null).

= public int getType();
Returns the event type, one of DRAWING_STARTED and DRAWING FINISHED. Additional types may be
defined in the future.

= public void setType(int type);
Sets the drawing type, which should be one of DRAWING_STARTED and DRAWING_FINISHED. Additional
types may be defined in the future.

This event provides a mechanism for finding out what percentage of the chart rendering has been
completed. Unfortunately, this isn’t fully implemented, so you cannot rely on it:

= public int getPercent();
Returns the percentage complete for the chart’s rendering. This should be a value in the range
0 to 100.

= public void setPercent(int percent);
Sets the percentage complete for the chart’s rendering. This should be a value in the range 0
to 100.

29.7.4 Notes

This mechanism is intended to provide the ability to report progress on the rendering of slow
drawing charts, but is not yet complete. It still serves a purpose in that it allows code to determine
the point at which chart rendering is complete.

29.8 ChartProgressListener

29.8.1 Overview

A listener that can receive progress updates from a chart. The listener will receive an event
(DRAWING_STARTED) when the chart drawing commences, and another event (DRAWING FINISHED) when
the chart drawing is finished.!

1Originally it was planned that the listener should receive interim events during chart drawing, but this hasn’t
been implemented yet.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.EVENT 289

29.8.2 Method

This interface defines a single method that receives notification (from a JFreeChart instance) of the
chart drawing progress:

= public void chartProgress(ChartProgressEvent event);
Receives notification of the progress of chart rendering.

29.9 MarkerChangeEvent

29.9.1 Overview

An event that is used to signal that some change has been made to a Marker. In JFreeChart, the
plot classes listen for changes to any markers they manage, and notify the chart when such changes
occur.

29.9.2 Constructors

There is a single constructor:

= public MarkerChangeEvent (Marker marker); [1.0.3]
Creates a new event with marker as the source. If marker is null, this constructor throws an
IllegalArgumentException.

29.9.3 Methods
The following method is defined:

= public Marker getMarker(); [1.0.3]
Returns the marker that triggered the event. This will never be null.

29.9.4 Notes

This class was introduced in version 1.0.3 (prior to this version, markers did not generate change
events).

See Also

MarkerChangeListener.

29.10 MarkerChangeListener

29.10.1 Overview

The interface through which MarkerChangeEvent notifications are posted. This interface is imple-
mented by CategoryPlot and XYPlot.

29.10.2 Methods

The interface defines a single method:

= public void markerChanged(MarkerChangeEvent event); [1.0.3]
Receives notification of a change to a marker.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.EVENT 290

29.10.3 Notes

Some points to note:

e this interface was introduced in JFreeChart version 1.0.3 (prior to this version, markers did
not generate change events);

e if a class needs to receive notification of changes to a marker, then it needs to implement this
interface and register itself with the marker.

See Also

MarkerChangeEvent.

29.11 OverlayChangeEvent

29.11.1 Overview

An event that is used to signal that some change has been made to an Overlay. In JFreeChart, a
ChartPanel listens for changes to any overlays it manages, and repaints itself when such changes
occur.

29.11.2 Constructors

There is a single constructor:

= ppublic OverlayChangeEvent(Object source); [1.0.13]
Creates a new event with the specified source (which will typically be the overlay itself). If
source is null, this constructor throws an IllegalArgumentException.

29.11.3 Notes

This class was introduced in version 1.0.13.

See Also

OverlayChangeListener.

29.12 OverlayChangeListener

29.12.1 Overview

The interface through which OverlayChangeEvent notifications are posted. This interface is imple-
mented by the ChartPanel class.

29.12.2 Methods

The interface defines a single method:

= public void overlayChanged(OverlayChangeEvent event); [1.0.13]
Receives notification of a change to a marker.

29.12.3 Notes

Some points to note:

e this interface was introduced in JFreeChart version 1.0.13.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.EVENT 291

See Also

OverlayChangeEvent.

29.13 PlotChangeEvent

29.13.1 Overview

An event that is used to provide information about changes to a plot. You can register an object
with a Plot instance, provided that the object implements the PlotChangeListener interface, and it
will receive a notification whenever the plot changes.

29.13.2 Notes

A JFreeChart object will automatically register itself with the Plot that it manages, and receive
notification whenever the plot changes. The chart usually responds by raising a ChartChangeEvent,
which other listeners may respond to (for example, the ChartPanel if the chart is displayed in a
GUI).

29.14 PlotChangelListener

29.14.1 Overview

An interface through which plot change event notifications are posted.

29.14.2 Methods

The interface defines a single method:

= public void plotChanged(PlotChangeEvent event);
Receives notification of a change to a plot.

29.14.3 Notes

Some points to note:

e if a class needs to receive notification of changes to a plot, then it needs to implement this
interface and register itself with the plot.

e the JFreeChart class implements this interface and automatically registers itself with the plot
it manages.

29.15 RendererChangeEvent

29.15.1 Overview

An event that is used to provide information about changes to a renderer. If an object needs to
receive notification of these events, its class should implement the RendererChangelListener interface
so the object can register itself with the renderer via the addChangeListener () method.

29.15.2 Usage

Typically, you won’t need to use this class directly. By default, JFreeChart’s plot classes will
automatically register (as a RendererChangeListener) with each renderer that is assigned to the
plot. As a result, (most) changes to a renderer will cause the plot to receive notification of the
change. The plot will usually respond by firing a PlotChangeEvent which, in turn, gets passed on to

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.EVENT 292

the chart and results in a ChartChangeEvent being fired. This chain of events is used to ensure that
charts are automatically updated whenever a change is made to any component of the chart.

29.15.3 Constructors

This event class defines two constructors:

= public RendererChangeEvent(Object renderer);
Equivalent to RendererChangeEvent (renderer, false)—see the next constructor.

= public RendererChangeEvent(Object renderer, boolean seriesVisibilityChanged); [1.0.13]
Creates a new event object with the specified renderer as the source. The seriesVisibilityChanged
flag is used so that the plot can decide whether or not to recalculate the axis ranges (if series
visibility changes, the axis ranges may need updating also).

29.15.4 Methods

To get the renderer that is the source of this event:

= public Object getRenderer();
Returns the renderer that is the source of this event. You will need to cast this to an appropriate

type.

To determine whether or not this event occurred because of a change to the series visibility flags
for the renderer:

= public boolean getSeriesVisibilityChanged(); [1.0.13]
Returns true if the series visibility flags were changed, and false otherwise.

29.15.5 Notes

In the current implementation, the event just signals a change without specifying exactly what
changed. A possible future enhancement would be to include information about the nature of the
change, so that the listener(s) can decide what action to take in response to the event.

See Also

RendererChangeListener

29.16 RendererChangeListener

29.16.1 Overview

An interface through which renderer change event notifications are posted. The CategoryPlot
and XYPlot classes implement this interface so they can receive notification of changes to their
renderer(s).

29.16.2 Methods

The interface defines a single method:

= public void rendererChanged(RendererChangeEvent event);
Receives notification of a change to a renderer.

29.16.3 Notes

If an Object needs to receive notification of changes to a renderer, then its class needs to implement
this interface so the object can register itself with the renderer.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.EVENT 293

29.17 TitleChangeEvent

29.17.1 Overview

An event that is used to provide information about changes to a chart title (any subclass of Title).

29.17.2 Notes

This event is part of the overall mechanism that JFreeChart uses to automatically update charts
whenever changes are made to components of the chart.

See Also

Title, TitleChangeListener.

29.18 TitleChangeListener

29.18.1 Overview

An interface through which title change event notifications are posted.

29.18.2 Methods

The interface defines a single method:

= public void titleChanged(TitleChangeEvent event);
Receives notification of a change to a title.

29.18.3 Notes

If a class needs to receive notification of changes to a title, then it needs to implement this interface
and register itself with the title.

See Also
TitleChangeEvent.

Chapter 30

Package: org.jfree.chart.imagemap

30.1 Overview

This package contains classes and interfaces that support the creation of HTML image maps. These
image maps can be created using the ImageMapUtilities class, typically from a servlet.

30.2 DynamicDriveToolTipTagFragmentGenerator

30.2.1 Overview
A tool-tip fragment generator that generates tool-tips that are designed to work with the Dynamic
Drive DHTML Tip Message library:

http://www.dynamicdrive.com

This class implements the ToolTipTagFragmentGenerator interface.

30.3 ImageMapUtilities

30.3.1 Overview

This class contains some utility methods that are useful for creating HTML image maps. A range
of demos (ImageMapDemo1-6.java) are included in the JFreeChart demo collection.

30.3.2 Methods

Several methods provide the ability to write an image map directly to a stream:!

= public static void writeImageMap(PrintWriter writer, String name,

ChartRenderingInfo info);

Writes an image map using info as the source of chart entity information. This is equivalent
to writeImageMap (writer, name, info, new Standard ToolTip TagFragmentGenerator(),

new Standard URLTagFragmentGenerator());

= public static void writeImageMap(PrintWriter writer, String name,

ChartRenderingInfo info, boolean useOverLibForToolTips) ;

Writes an image map using info as the source of chart entity information. This will use an
instance of OverLIBToolTipTagFragmentGenerator to format the tooltip output, if requested.

INote that in the current implementation, the image map is created entirely in memory and then written to the
stream, which is not as efficient as it could be.

294

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.IMAGEMAP 295

= public static void writeImageMap(PrintWriter writer, String name,

ChartRenderingInfo info, ToolTipTagFragmentGenerator toolTipTagFragmentGenerator,
URLTagFragmentGenerator urlTagFragmentGenerator) throws IOException;

Writes an image map using info as the source of chart entity information. This method first
calls getImageMap() to create the image map text, then writes it to write. The tooltip and URL
fragment generators provide the option to customize the imagemap output.

To create an HTML image map string:

= public static String getImageMap(String name, ChartRenderingInfo info);

Returns an image map based on the chart entity information in info. This is equivalent to
getImageMap (name, info, new StandardToolTip TagFragmentGenerator(), new StandardURL-
TagFragmentGenerator());

= public static String getImageMap(String name, ChartRenderingInfo info,
ToolTipTagFragmentGenerator toolTipTagFragmentGenerator,
URLTagFragmentGenerator urlTagFragmentGenerator) ;

Returns an HTML image map based on the chart entity information in info.

The following method creates standard escape sequences for “unsafe” characters in a string that
will be embedded in HTML output:

= public static String htmlEscape(String input); [1.0.9]
Returns a string that corresponds to the input string after replacing certain characters with
standard HTML escape sequences. If input is null, this method throws an I1legalArgumentException.

To escape special characters in a Javascript string:

= public static String javascriptEscape(String input); [1.0.13]
Returns a string that is equivalent to the input string, but with special characters converted to
JavaScript escape sequences. If input is null, this method throws an IllegalArgumentException.

30.3.3 Notes

Some points to note:

e tooltip and URL content is controlled by generators defined in the packages:

— org.jfree.chart.labels.* for tooltips;

— org.jfree.chart.urls.* for URLs.

...whereas the tooltip and URL fragment generators defined in this package are concerned
with variation in the HTML tags that get incorporated into the HTML image map.

30.4 OverLIBToolTipTagFragmentGenerator

30.4.1 Overview

A tool-tip generator that generates tool-tips for use with the OverLIB library. See this URL for
details:

http://www.bosrup.com/web/overlib/

This class implements the ToolTipTagFragmentGenerator interface.

30.5 StandardToolTipTagFragmentGenerator

30.5.1 Overview

A tool-tip generator that generates tool-tips using the HTML title attribute. This class implements
the ToolTipTagFragmentGenerator interface.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.IMAGEMAP 296

30.6 StandardURLTagFragmentGenerator

30.6.1 Overview

A default implementation of the URLTagFragmentGenerator interface. Instances of this class are
created by some methods in the ImageMapUtilities class, to create the href elements in the HTML
image map. You can supply an alternative implementation if you want greater control over the
hyperlinks in the image map.

30.6.2 Constructor

This class has only the default constructor. Instances are stateless, so there are no attributes to
define.

30.6.3 Methods

This class implements a single method:

= public String generateURLFragment (String urlText) ;
Returns a URL fragment containing the specified URL text. The implementation is very simple:

return " href=\"" + urlText + "\"";

30.6.4 Equals, Cloning and Serialization

This class has no state, and is typically used for a single call to the getImageMap() or writeImageMap ()
methods in the ImageMapUtilities class. Therefore, it does not override the equals() method, and
is neither cloneable nor serializable.

See Also

URLTagFragmentGenerator.

30.7 ToolTipTagFragmentGenerator

30.7.1 Overview

The interface that must be implemented by a class that generates tooltip tag fragments for an
HTML image map.

Classes that implement this interface include:
® StandardToolTipTagFragmentGenerator;
® DynamicDriveToolTipTagFragmentGenerator;

® OverLIBToolTipTagFragmentGenerator;

30.7.2 Methods

This interface defines a single method:

= public String generateToolTipFragment (String toolTipText) ;
Returns a tooltip fragment based on the supplied tool-tip text.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.IMAGEMAP 297

30.8 URLTagFragmentGenerator

30.8.1 Overview

The interface that must be implemented by a class that generates the URL tag fragment for an
HTML image map. For example, in the following area element, the URL fragment is shown under-
lined:

<area shape="rect" coords="553,259,564,288" title="(Series 3, Type 8) = 12"
alt="" href="bar_chart_detail.jsp?series=Series+3&category=Type+8"/>

The URL content is created elsewhere, but this generator is responsible for generating the sur-
rounding text (the href tag in this case). The StandardURLTagFragmentGenerator class is the only
implementation of this interface provided by JFreeChart.

30.8.2 Methods

This interface defines a single method:

= public String generateURLFragment (String urlText);
Returns a URL fragment based on the supplied URL text.

30.8.3 Notes

You can pass an instance of a class that implements this interface to the getImageMap() and
writeImageMap() methods in the ImageMapUtilities class.

Chapter 31

Package: org.jfree.chart.labels

31.1 Introduction

This package contains interfaces and classes for generating labels for the individual data items in a
chart. There are two label types:

e item labels — text displayed in, on or near to each data item in a chart;
e tooltips — text that is displayed when the mouse pointer “hovers” over a data item in a chart.

Section 11 contains information about using tool tips and section 12 contains information about
using item labels.

31.2 AbstractCategoryltemLabelGenerator

31.2.1 Overview

An abstract base class for creating item labels for a CategoryItemRenderer. Known subclasses
include:

o StandardCategoryToolTipGenerator;

® StandardCategoryltemLabelGenerator.

The generator uses Java’s MessageFormat class to construct labels by substituting any or all of the
objects listed in table 31.1.

The data value is formatted before it is passed to the MessageFormat—you can specify the NumberFormat
or DateFormat that is used to preformat the value via the constructor.

31.2.2 Constructors

Two (protected) constructors are provided, the difference between them is the type of formatter
(number or date) for the data values. In both cases, the labelFormat parameter determines the
overall structure of the generated label-—you can use the substitutions listed in table 31.1.

Code: \ Description:

{0} The series name.
{1} The category label.
{2} The (preformatted) data value.

Table 31.1: MessageFormat substitutions

298

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 299

= protected AbstractCategoryItemLabelGenerator(String labelFormat,
NumberFormat formatter);
Creates a new generator that formats the data values using the supplied NumberFormat instance.

= protected AbstractCategoryIltemLabelGenerator(String labelFormat,
DateFormat formatter);
Creates a new generator that formats the data values using the supplied DateFormat instance.

Methods

To generate a label string:

= protected String generateLabelString(CategoryDataset dataset, int row, int column);
Generates a label string. This method first calls the createItemArray() function, then passes
the result to Java’s MessageFormat to build the required label.

The following function builds the array (Object[1) that contains the items that can be substituted
by the MessageFormat code:

= protected Object[] createltemArray(CategoryDataset dataset, int row, int column);
Returns an array containing three items, the series name, the category label and the formatted
data value.

31.2.3 Notes

Some points to note:

e the StandardCategoryToolTipGenerator and StandardCategoryIltemLabelGenerator classes are
extensions of this class;

e instances of this class are Cloneable and Serializable.

31.3 AbstractPieltemLabelGenerator

31.3.1 Overview

A base class used to create label generators for pie charts. Subclasses include:

® StandardPieSectionLabelGenerator;

® StandardPieToolTipGenerator.

31.3.2 Constructor

The following constructor is provided for use by subclasses:

= protected AbstractPieIltemLabelGenerator(String labelFormat,

NumberFormat numberFormat, NumberFormat percentFormat);

Creates a new instance with the specified formatting attributes. The labelFormat is a string
that is used by an internal MessageFormat instance to compose a section label for an item in
the dataset—see the generateSectionLabel() method. If any of the arguments is null, this
constructor will throw an IllegalArgumentException.

31.3.3 Methods
The following methods are defined:

= public String getLabelFormat();
Returns the formatting string that is used by the internal MessageFormat instance.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 300

Token: | Description:

{0} The series name.
{1} The (preformatted) x-value.
{2} The (preformatted) y-value.

Table 31.2: MessageFormat substitutions

= public NumberFormat getNumberFormat() ;

Returns the number formatter used to preformat each dataset value before incorporating it
into a section label. Note that the label format string (see getLabelFormat()) may or may not
include the dataset value.

= public NumberFormat getPercentFormat();

Returns the number formatter used to preformat each percentage value® before incorporating
it into a section label. Note that the label format string (see getLabelFormat()) may or may
not include the percentage value.

= protected Object[] createltemArray(PieDataset dataset, Comparable key);
Creates an array of objects to pass to the internal MessageFormat instance used to create the
section label. The array contains four String objects:

e item 0: key.toString();
e item 1: the dataset value formatted using getNumberFormat (), or null;
e item 2: the dataset value as a percentage formatted using getPercentFormat();

e item 3: the total of all the dataset values, formatted using getNumberFormat ().

= protected String generateSectionLabel(PieDataset dataset, Comparable key);
Returns a section label for the specified item in the given dataset. This method is called by
JFreeChart, it typically won’t be called by external code.

31.3.4 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this generator for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

31.4 AbstractXYItemLabelGenerator

31.4.1 Overview

An abstract base class that creates item labels (on demand) for an XYItemRenderer. Subclasses
include:

e StandardXYToolTipGenerator; and

o StandardXYItemLabelGenerator.

Internally, the generator uses Java’s MessageFormat class to construct labels by substituting any or
all of the tokens listed in table 31.2. The x and y values are formatted before they are passed to
MessageFormat—you can specify the NumberFormat or DateFormat that is used to preformat the values
via the constructor.

1The percentage value is the dataset value expressed as a percentage of the sum of all dataset values.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 301

31.4.2 Constructors

All the constructors for this class are protected and provided for use by subclasses only. The
provided constructors give you control over the formatters (number or date) used for the x and
y data values. In all cases, the labelFormat parameter determines the overall structure of the
generated label—you can use the substitutions listed in table 31.2.

= protected AbstractXYItemLabelGenerator();
Creates a new generator that formats the data values using the default number formatter for
the current locale.

= protected AbstractXYItemLabelGenerator(String formatString, NumberFormat xFormat,
NumberFormat yFormat);
Creates a new generator that formats the data values using the supplied NumberFormat instances.

= protected AbstractXYItemLabelGenerator(String formatString, DateFormat xFormat,
NumberFormat yFormat) ;
Creates a new generator that formats the x-values as dates and the y-values as numbers.

= protected AbstractXYItemLabelGenerator(String formatString, DateFormat xFormat,
NumberFormat yFormat); [1.0.4]

Creates a new generator that formats the x-values as numbers and the y-values as dates.
= protected AbstractXYItemLabelGenerator(String formatString, DateFormat xFormat,

DateFormat yFormat);
Creates a new generator that formats both the x and y values as dates.

Attributes

To obtain the format string that was specified in the constructor:

= public String getFormatString();
Returns the format string that will be passed to a MessageFormat instance when creating the
item label.

In the typical case, the x and y values are formatted as numbers:

= public NumberFormat getXFormat();
Returns the formatter for the x-values (never null). Note that if the getXDateFormat () method
returns a non-null formatter, it will be used instead.

= public NumberFormat getYFormat();
Returns the formatter for the y-values (never null). Note that if the getYDateFormat () method
returns a non-null formatter, it will be used instead.

These formatters can be (optionally) overridden by date formatters:

= public DateFormat getXDateFormat();

Returns the (date) formatter for the x-values. If this is null, the x-values will be formatted as
numbers—see getXFormat ().

= public DateFormat getYDateFormat();

Returns the (date) formatter for the y-values. If this is null, the y-values will be formatted as
numbers—see getYFormat ().

Other Methods

The following methods are called by JFreeChart—you won’t normally call them directly from your
own code:

= protected String generatelabelString(XYDataset dataset, int series, int item);
Generates a label string. This method first calls the createItemArray() method, then passes
the result to Java’s MessageFormat to build the required label.

The following function builds the array (Object[1) that contains the items that can be substituted
by the MessageFormat code:

= protected Object[] createltemArray(XYDataset dataset, int series, int item);
Returns an array containing three items, the series name, the formatted x and y data values.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 302

31.4.3 Equals, Cloning and Serialization
This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this generator for equality with an arbitrary object. This method returns true if and
only if:

® obj is not null;
e obj is an instance of AbstractXYItemLabelGenerator;

e obj has the same attributes as this generator.

Instances of this class are Cloneable and Serializable.

31.4.4 Notes

Some points to note:

e the StandardXYToolTipGenerator and StandardXYItemLabelGenerator classes are extensions of
this class.

31.5 BoxAndWhiskerToolTipGenerator

31.5.1 Overview

A tool tip generator for a box-and-whisker chart. This is the default generator used by the
BoxAndWhiskerRenderer class.

31.6 BoxAndWhiskerXYToolTipGenerator
31.6.1 Overview

A tool tip generator for a box-and-whisker chart. This is the default generator used by the
XYBoxAndWhiskerRenderer class.

31.7 CategoryltemLabelGenerator

31.7.1 Overview

A category item label generator is an object that assumes responsibility for creating the text strings
that will be used for item labels in a chart. A generator is assigned to a renderer using the
setItemLabelGenerator () method in the CategoryItemRenderer interface. This interface defines the
API through which the renderer will communicate with the generator.

31.7.2 Usage

Chapter 12 contains information about using item labels.

31.7.3 Methods

The renderer will call this method to obtain an item label:

= public String generatelabel(CategoryDataset data, int series, int category);

Returns a string that will be used to label the specified item. Classes that implement this
method are permitted to return null for the result, in which case no label will be displayed for
that item.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 303

Additional methods:

= public String generateRowLabel(CategoryDataset dataset, int row);
Returns a label for the given row in the dataset.

= public String generateColumnLabel(CategoryDataset dataset, int column);
Returns a label for the given column in the dataset.

31.7.4 Notes
Some points to note:

e the StandardCategoryItemLabelGenerator class provides one implementation of this interface,
but you can also write your own class that implements this interface, and take complete
control over the generation of item labels.

31.8 CategorySeriesLabelGenerator

31.8.1 Overview

An interface defining the API that a caller (typically a CategoryItemRenderer) can use to obtain a la-
bel for a series in a dataset. This interface is implemented by the StandardCategorySeriesLabelGenerator
class.

31.8.2 Methods

The renderer will call this method to obtain an item label:

= public String generatelLabel(CategoryDataset dataset, int series);
Returns a string that will be used to label the specified series.

31.8.3 Notes
Some points to note:
e by convention, all classes that implement this interface should be either:

— immutable; or

— implement the PublicCloneable interface.

This provides a mechanism for a referring class to determine whether or not it needs to clone
the generator, and access to the clone() method in the case that the generator is cloneable.

31.9 CategoryToolTipGenerator

31.9.1 Overview

A category tool tip generator is an object that assumes responsibility for creating the text strings that
will be used for tooltips in a chart. A generator is assigned to a renderer using the setToolTipGenerator ()
method in the CategoryItemRenderer interface. This interface defines the API through which the
renderer will communicate with the generator.

31.9.2 Methods

The renderer will call this method to obtain the tooltip text for an item:

= public String generateToolTip(CategoryDataset data, int series, int category);
Returns a string that will be used as the tooltip text for the specified item. If null is returned,
no tool tip will be displayed.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 304

31.9.3 Notes
Some points to note:

e the StandardCategoryToolTipGenerator provides one implementation of this interface, but you
can also write your own class that implements this interface, and take complete control over
the generation of item labels and tooltips;

e refer to chapter 11 for information about using tool tips.

31.10 ContourToolTipGenerator
31.10.1 Overview

The interface that must be implemented by all contour tool tip generators. When a ContourPlot
requires tooltip text for a data item, it will obtain it via this interface.

This interface is deprecated as of JFreeChart version 1.0.4.

31.10.2 Methods

The interface defines a single method for obtaining the tooltip text for a data item:

= public String generateToolTip(ContourDataset data, int item);
Returns a string that can be used as the tooltip text for a data item.

See Also

ContourPlot.

31.11 CrosshairLabelGenerator

31.11.1 Overview

The interface that defines the API through which a Crosshair will generate its label. This interface
was first introduced in JFreeChart 1.0.13.

31.11.2 Methods

The crosshair will call this method to obtain a label:

= public String generatelLabel(Crosshair crosshair); [1.0.13]

Returns a string that will be used to label the specified crosshair. Classes that implement this
method are permitted to return null for the result, in which case no label will be displayed for
that crosshair.

31.12 CustomXYToolTipGenerator

31.12.1 Overview

A tool tip generator (for use with an XYItemRenderer) that returns a predefined tool tip for each
data item.

31.12.2 Methods
To specify the text to use for the tool tips:

= public void addToolTipSeries(List toolTips);
Adds the list of tool tips (for one series) to internal storage. These tool tips will be returned
(without modification) by the generator for each data item.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 305

31.12.3 Notes

See section 11 for information about using tool tips with JFreeChart.

31.13 HighLowltemLabelGenerator

31.13.1 Overview

A label generator that is intended for use with the HighLowRenderer class. The generator will only
return tooltips for a dataset that is an implementation of the OHLCDataset interface.

31.13.2 Constructors

To create a new label generator:

= public HighLowItemLabelGenerator (DateFormat dateFormatter, NumberFormat numberFormatter) ;
Creates a new label generator that uses the specified date and number formatters.

31.13.3 Methods

The key method constructs a String to be used as the tooltip text for a particular data item:

= public String generateToolTip(XYDataset dataset, int series, int item);

Returns a string containing the date, value, high value, low value, open value and close value for
the data item. This method will return null if the dataset does not implement the OHLCDataset
interface.

The following method is intended to generate an item label for display in a chart, but since the
renderer does not yet support this the method simply returns null:

= public String generateltemLabel(XYDataset dataset, int series, int category);
Returns null. To be implemented.

31.13.4 Notes

See section 11 for an overview of tool tips with JFreeChart.

31.14 IntervalCategoryltemLabelGenerator

31.14.1 Overview

An label generator that can be used with any CategoryItemRenderer. This generator will detect if
the dataset supplied to the renderer is an implementation of the IntervalCategoryDataset interface,
and will generate labels that display both the start value and the end value for each item.

31.14.2 Constructors

The default constructor will create a label generator that formats the data values as numbers, using
the platform default number format:

= public IntervalCategoryIltemLabelGenerator();
Creates a new label generator with a default number formatter.

If you prefer to set the number format yourself, use the following constructor:

= public IntervalCategoryltemLabelGenerator (NumberFormat formatter);
Creates a new label generator with a specific number formatter.

In some cases, the data values in the dataset will represent dates (encoded as milliseconds since
midnight, 1-Jan-1970 GMT, as for java.util.Date). In this case, you can create a label generator
using the following constructor:

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 306

= public IntervalCategoryltemLabelGenerator(DateFormat formatter);
Creates a new label generator that formats the start and end data values as dates.

31.14.3 Notes

The createGanttChart() in the ChartFactory class uses this type of label generator (with date
formatting).

31.15 IntervalCategoryToolTipGenerator

31.15.1 Overview

A tool tip generator that can be used with any CategoryItemRenderer. This generator will detect if
the dataset supplied to the renderer is an implementation of the IntervalCategoryDataset interface,
and will generate labels that display both the start value and the end value for each item.

This generator adds two new substitutions to those it inherits from StandardCategoryToolTipGenerator:

e {3} — the start value;

e {4} — the end value.

31.15.2 Constructors

The following constructors are defined:

= public IntervalCategoryToolTipGenerator();
Equivalent to IntervalCategoryToolTipGenerator(" ({0}, {1}) = {3} - {4}",
NumberFormat .getInstance())—see the next constructor.

If you prefer to set the number format yourself, use the following constructor:

= public IntervalCategoryToolTipGenerator(String labelFormat, NumberFormat formatter);
Creates a new tool tip generator with a specific format string and number formatter.

In some cases, the data values in the dataset will represent dates (encoded as milliseconds since
midnight, 1-Jan-1970 GMT, as for java.util.Date). In this case, you can create a label generator
using the following constructor:

= public IntervalCategoryToolTipGenerator(String labelFormat, DateFormat formatter);
Creates a new tool tip generator that formats the start and end data values as dates.

31.15.3 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this tool tip generator for equality with an arbitrary object (which may be null).

Instances of this class are Cloneable, PublicCloneable and Serializable.

31.15.4 Notes

The createGanttChart() method in the ChartFactory class uses this type of label generator (with
date formatting).

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 307

31.16 ItemLabelAnchor

31.16.1 Overview

An item label anchor is used by a renderer to calculate a fixed point (the item label anchor point)
relative to a data item on a chart. This point becomes a reference point that an item label can be
aligned to.

This class defines 25 anchors. The numbers 1 to 12 are used and roughly correspond to the positions
of the hours on a clock face. In addition, positions are defined relative to an “inside” ring and an
“outside” ring - see figure 31.1 for an illustration.

OUTSIDE_12
_.-O---.___ OUTSIDE_1
OUTSIDE_I1 - 0 -
" INSIDE_12 .
OUTSIDE_10 O .
e o Ca O OUTSIDE_2
‘ o Q \
OUTSIDE_9 O O %} 0 O OUTSIDE_3
: Q CENTER O /
OUTSIDE_§ © ©-0-¢ O OUTSIDE_4
~ INSIDE_6 .~
0. o
OUTSIDE_7 ~ .~ OUTSIDE_S
OUTSIDE_6

Figure 31.1: The Item Label Anchors

With 12 points on the inside circle, 12 points on the outside circle, plus a “center” anchor point, in
all there are 25 possible anchor points.

For some renderers, the circular arrangement of anchor points doesn’t make sense, so the renderer
is free to modify the anchor positions (see the BarRenderer class for an example).

31.16.2 Usage

The ItemLabelPosition class includes an item label anchor as one of the attributes that define the
location of item labels drawn by a renderer.

31.17 ItemLabelPosition

31.17.1 Overview

This class is used to specify the position of item labels on a chart. Four attributes are used to
specify the position:

e the item label anchor - the renderer will use this to calculate an (x, y) anchor point on the
chart near to the data item that the item label corresponds to (see ItemLabelAnchor);

e the text anchor - this is a point relative to the item label text which will be aligned with the
item label anchor point above;

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 308

e the rotation anchor - this is another point somewhere on the item label about which the text
will be rotated (if there is a rotation);

e the rotation angle - this specifies the amount of rotation about the rotation point.

These four attributes provide a lot of scope for placing item labels in interesting ways.

31.17.2 Usage

The AbstractRenderer class provides methods for specifying the item label position for positive and
negative data values separately:

= public void setPositiveltemLabelPosition(ItemLabelPosition position);
Sets the item label position for positive data values.

= public void setNegativeItemLabelPosition(ItemLabelPosition position);
Sets the item label position for negative data values.

31.17.3 Constructors

This class defines three constructors:

= public ItemLabelPosition();
Creates a default instance. Equivalent to this(ItemLabelAnchor.0UTSIDE12, TextAnchor.BOTTOM_CENTER)—
see below.

= public ItemLabelPosition(ItemLabelAnchor itemLabelAnchor, TextAnchor textAnchor);
Creates a position with no text rotation. Equivalent to this(itemLabelAnchor, textAnchor,
TextAnchor.CENTER, 0.0).

w public ItemLabelPosition(ItemLabelAnchor itemLabelAnchor, TextAnchor textAnchor, TextAnchor
rotationAnchor, double angle);
Creates a new ItemLabelPosition instance. None of the arguments can be null.

31.17.4 Methods

Accessor methods are defined for the attributes specified via the constructor.

= public ItemLabelAnchor getItemLabelAnchor();
Returns the anchor point for the item label (never null). This defines a location relative to the
data value on the chart to which the item label will be aligned.

= public TextAnchor getTextAnchor();
Returns the reference point on the label text that will be aligned to the anchor point on the
chart. This method never returns null.

= public TextAnchor getRotationAnchor();
Returns the reference point on the label text about which any rotation will be performed. This
method never returns null.

= public double getAngle();
Returns the angle of rotation for the text (in radians).

None of the above attributes can be modified post-construction, because instances of this class are
immutable.

31.17.5 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this ItemLabelPosition for equality with an arbitrary object. Returns true if and only if:

® obj is not null;

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 309

e obj is an instance of ItemLabelPosition;

e obj has the same attributes as this instance.

Instances of this class are immutable, so they don’t need to be Cloneable. Instances of this class
are Serializable.

31.18 MultipleXYSeriesLabelGenerator
31.18.1 Overview

A series label generator that can return multiple labels (separated by a newline character) for a

single series. You might use this generator to show legend items in two or more languages, for
example.

31.18.2 Constructors

This class defines two constructors:

= public MultipleXYSeriesLabelGenerator();
Equivalent to MultipleXYSeriesLabelGenerator("{0}")—see the next constructor.

= public MultipleXYSeriesLabelGenerator(String format) ;

Creates a new generator where the main label is generated with the specified format string. At
label generation time, any occurrence of {0} in the format string will be replaced by the series
name.

31.18.3 Methods
The following methods are defined:

= public void addSeriesLabel(int series, String label);
Adds an additional label for a series. This method does NOT fire a change event.

= public void clearSeriesLabels(int series);
Clears the additional labels for the specified series. This method does NOT fire a change event.

= public String generateLabel(XYDataset dataset, int series);
Generates the label string for a series in the specified dataset.

w protected Object[] createltemArray(XYDataset dataset, int series);
Creates and returns an array (of length 1) containing the string representation of the key for
the specified series. This method is used internally.

31.18.4 Equals, Cloning and Serialization
This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this generator for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

See Also

XYSeriesLabelGenerator.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 310

31.19 PieSectionLabelGenerator

31.19.1 Overview

An interface that defines the methods used by a PiePlot to request section labels. Two generators
can be specified for a PiePlot:

e setlLabelGenerator () — generates the labels displayed directly on the plot;

e setLegendLabelGenerator () — generates the labels displayed in the plot’s legend (if it has one).

The StandardPieSectionLabelGenerator class provides a standard implementation of this interface.

31.19.2 Usage

The PieChartDemo2.java demo application includes code to customise the section labels, so you can
refer to that demo for sample usage.

31.19.3 Methods

The PiePlot class will call the following method to obtain a section label for each section in a pie
chart as it is being drawn:

= public String generateSectionLabel(PieDataset dataset, Comparable key);
Returns a section label for the specified item in the dataset. A class implementing this method
can return null, in which case no label will be displayed for the pie section.

An alternative method that returns an AttributedString is defined, but is currently not used:

= public AttributedString generateAttributedSectionLabel(PieDataset dataset, Comparable key);
Returns an AttributedString for the section label for the specified item in the dataset. This
method is not used at present—classes implementing this interface can safely return null for
this method.

31.19.4 Notes
Some points to note:
e you can develop your own label generator, register it with a PiePlot, and take full control

over the labels that are generated.

See Also

PieToolTipGenerator.

31.20 PieToolTipGenerator

31.20.1 Overview

The interface that must be implemented by a pie tool tip generator, a class used to generate tool
tips for a pie chart.

31.20.2 Methods

The PiePlot class will call the following method to obtain a tooltip for each section in a pie chart:

= public String generateToolTip(PieDataset data, Comparable key);
Returns a String that will be used as the tool tip text. This method can return null in which
case no tool tip will be displayed.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 311

31.20.3 Notes
Some points to note:
e the StandardPieToolTipGenerator class provides an implementation of this interface;

e you can develop your own tool tip generator, register it with a PiePlot, and take full control
over the labels that are generated;

e section 11 contains information about using tool tips with JFreeChart.

31.21 StandardCategoryltemLabelGenerator

31.21.1 Overview

A generator that can be assigned to a CategoryItemRenderer for the purpose of generating item
labels (this class implements the CategoryItemLabelGenerator interface). This class is very flexible
in the format of the labels it can generate. It uses Java’s MessageFormat class to create a label
which can contain any of the items listed in table 31.1. The data value can be formatted using any
NumberFormat instance.

31.21.2 Usage
Most often you will assign a generator to a renderer and then never need to refer to it again:

CategoryPlot plot = (CategoryPlot) chart.getPlot();

CategoryItemRenderer renderer = plot.getRenderer();

CategoryItemLabelGenerator generator = new StandardCategoryItemLabelGenerator (
"{2}", new DecimalFormat("0.00"));

renderer.setItemLabelGenerator (generator) ;

renderer.setItemLabelsVisible(true);

The renderer will call the generator’s methods when necessary. See section 12 for more information.

31.21.3 Constructors

To create a default generator:

= public StandardCategoryItemLabelGenerator();
Creates a new generator that formats values using the default number format for the user’s
locale. "{2}" is used as the label format string (that is, just the data value).

To create a generator that formats values as numbers:

= public StandardCategoryltemLabelGenerator(String labelFormat,

NumberFormat formatter);

Creates a generator that formats values as numbers using the supplied formatter. The labelFormat
is passed to a MessageFormat to control the structure of the generated label, and can use any of
the substitutions listed in table 31.1.

To create a generator that formats values as dates (interpreting the numerical value as milliseconds
since 1-Jan-1970, in the same way as java.util.Date):

= public StandardCategoryltemLabelGenerator (String labelFormat,

DateFormat formatter);

Creates a generator that formats values as dates using the supplied formatter. The labelFormat
is passed to a MessageFormat to control the structure of the generated label, and can use any of
the substitutions listed in table 31.1.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 312

31.21.4 Methods

The renderer will call the following method whenever it requires an item label:

= public String generatelLabel(CategoryDataset dataset,
int series, int category);
Generates an item label for the specified data item.

31.21.5 Notes

Some points to note:

e instances of this class are cloneable and serializable, and the PublicCloneable interface is
implemented;

e for a demo, see ItemLabelDemo3. java in the JFreeChart demo collection.

31.22 StandardCategorySeriesLabelGenerator

31.22.1 Overview

A generator that can be assigned to a CategoryItemRenderer for the purpose of generating series
labels (this class implements the CategorySeriesLabelGenerator interface) for the legend. This class
uses Java’s MessageFormat class to substitute the series name into an arbitrary string containing the
token {0}.

31.22.2 Usage

Most often you will assign a generator to a renderer and then never need to refer to it again:
CategoryPlot plot = (CategoryPlot) chart.getPlot();
AbstractCategoryItemRenderer renderer = (AbstractCategoryIltemRenderer) plot.getRenderer();
CategorySeriesLabelGenerator generator = new StandardCategorySeriesLabelGenerator("{0}");

renderer.setLegendItemLabelGenerator (generator) ;
renderer.setItemLabelsVisible(true);

The renderer will call the generator’s methods when necessary.

31.22.3 Constructors

To create a default generator:

= public StandardCategorySeriesLabelGenerator();
Creates a new generator that uses just the series name as the label.

To create a generator that formats with a custom format string:

= public StandardCategorySeriesLabelGenerator(String labelFormat) ;
Creates a generator with the given format string. The labelFormat is passed to a MessageFormat
to control the structure of the generated label, with {0} being substituted by the series name.

31.22.4 Methods

The renderer will call the following method whenever it requires a series label:

= public String generateLabel(CategoryDataset dataset, int series);
Generates a series label for the specified series. This method is typically called by JFreeChart,
not by external code.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 313

Code: ‘ Description:

{0} The series key (or name).
{1} The category.
{2} The item value.

Table 31.3: MessageFormat substitutions for StandardCategoryToolTipGenerator

31.22.5 Equals, Cloning and Serialization

This class override the equals method:

= public boolean equals(Object obj);
Tests this generator for equality with an arbitrary object, returning true if and only if:
e obj is an instance of StandardCategorySeriesLabelGenerator;

e obj has the same formatPattern string as this generator.

Instances of this class are Cloneable and Serializable.

31.23 StandardCategoryToolTipGenerator

31.23.1 Overview

A generator that can be assigned to a CategoryItemRenderer for the purpose of generating tooltips.
A format string provides the general template for each tool tip item, and Java’s MessageFormat class
is used to substitute actual values from the dataset (the series key/name, the category, and the
data value). Table 31.3 lists the items that can be included for substitution.

31.23.2 Usage

This class provides an easy way to customise the tool tip text generated by a CategoryItemRenderer.
This example shows how to create a new tool tip generator, and assign it to the plot’s renderer:

CategoryPlot plot = (CategoryPlot) chart.getPlot();

CategoryIltemRenderer renderer = plot.getRenderer();

renderer.setToolTipGenerator (new StandardCategoryToolTipGenerator (
"The value is {2}, the series is {0} and the category is {1}.",
NumberFormat .getInstance()));

Once the generator is set, nothing more needs to be done—the renderer will call the generator’s
methods when necessary.

31.23.3 Constructors

This class has a default constructor:

= public StandardCategoryToolTipGenerator();
Creates a new generator that creates tooltips using the format string “{0},{1} = {2}”. The
data value is formatted using the default number format for the user’s locale.

To create a generator that formats values as numbers:

= public StandardCategoryToolTipGenerator(String labelFormat, NumberFormat formatter);
Creates a generator that creates tooltips using the specified format string and number formatter.
An IllegalArgumentException is thrown if either argument is null.

To create a generator that formats values as dates (interpreting the numerical value as milliseconds
since 1-Jan-1970, in the same way as java.util.Date):

= public StandardCategoryToolTipGenerator(String labelFormat, DateFormat formatter);
Creates a generator that creates tooltips using the specified format string and date formatter.
In this case, the data value is interpreted as the number of milliseconds since 1-Jan-1970 (as
for java.util.Date). An IllegalArgumentException is thrown if either argument is null.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 314

31.23.4 Methods

When the renderer requires a tool tip, it will call the following method:

= public String generateToolTip(CategoryDataset dataset,

int series, int category);

Generates a tooltip for the specified data item using the format string and number (or date)
formatter supplied to the constructor.

31.23.5 Notes

Some points to note:

e this class implements the CategoryToolTipGenerator and PublicCloneable interfaces;

e section 11 contains information about using tool tips with JFreeChart.

See Also

IntervalCategoryToolTipGenerator.

31.24 StandardContourToolTipGenerator

31.24.1 Overview

A default implementation of the ContourToolTipGenerator interface.

This class is deprecated as of JFreeChart version 1.0.4.

31.25 StandardCrosshairLabelGenerator

31.25.1 Overview

A default implementation of the CrosshairLabelGenerator interface. This class was first introduced
in JFreeChart 1.0.13.

= public StandardCrosshairLabelGenerator(); [1.0.13]
Equivalent to this("{0}", NumberFormat.getNumberInstance())—see the next constructor.

= public StandardCrosshairLabelGenerator(String labelTemplate, NumberFormat numberFormat) ;
[1.0.13]
Creates a new generator with the specified label template.

31.25.2 Methods

= public String getLabelTemplate(); [1.0.13]

Returns the label template string that was specified in the constructor. The template string
is used within the generateLabel() method to create a label. Any occurrence of ”{0}” will
be replaced by the crosshair value converted to a string using the formatter returned by the
getNumberFormat () method.

= public NumberFormat getNumberFormat(); [1.0.13]
Returns the number formatter that was supplied to the constructor. This method never returns
null.

The crosshair will call this method to obtain a label:

= public String generatelabel(Crosshair crosshair); [1.0.13]
Returns a string that will be used to label the specified crosshair.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 315

Code: ‘ Description:

{0} The item key.

{1} The item value.

{2} The item value as a percentage of the total.
{3} The total of all values in the dataset.

Table 31.4: MessageFormat substitutions for the StandardPieSectionLabelGenerator.

31.25.3 Equals, Cloning and Serialization

This class overrides the equals() method:

= public boolean equals(Object obj); [1.0.13]
Tests this instance for equality with an arbitrary object.

w public int hashCode(); [1.0.13]
Returns a hash code for this instance.

Instances of this class are serializable but NOT cloneable (they are immutable, so cloning is not
necessary).

31.26 StandardPieSectionLabelGenerator

31.26.1 Overview

A generator that is used to create section labels for a PiePlot. The generator uses Java’s MessageFormat
class to construct labels by substituting any or all of the objects listed in table 31.4. The default
section label format is "{0}",? which displays the item key as a string.

This class implements the PieSectionLabelGenerator interface.

31.26.2 Usage

You can use this class when you want to change the format of the the section labels on a pie chart.
For example, to show percentages in the pie section labels:

PiePlot plot = (PiePlot) chart.getPlot();

PieSectionLabelGenerator generator = new StandardPieSectionLabelGenerator(

"{0} = {2}", new DecimalFormat("0"), new DecimalFormat("0.00%"));
plot.setLabelGenerator (generator) ;

31.26.3 Constructors

The default constructor uses number and percentage formatters appropriate for the default locale:

= public StandardPieSectionLabelGenerator();
Creates a default section label generator.

You can create a generator with a specific format string:

= public StandardPieSectionLabelGenerator(String labelFormat) ;
Equivalent to StandardPieSectionLabelGenerator (labelFormat, Locale.getInstance())—see be-
low.

= public StandardPieSectionLabelGenerator(Locale locale); [1.0.7]
Equivalent to StandardPieSectionLabelGenerator (DEFAULT_SECTION_LABEL_FORMAT, locale)—see be-
low.

= public StandardPieSectionLabelGenerator(String labelFormat, Locale locale); [1.0.7]
Creates a generator using the specified format string. The item value and percentage (if included
in the format string) will be formatted using default formatters for the specified locale. If
labelFormat is null, this constructor throws an IllegalArgumentException.

2This is defined in the DEFAULT_SECTION_LABEL_FORMAT constant field.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 316

The final constructor allows you to specify the item value and percentage formatters:

= public StandardPieSectionLabelGenerator(String labelFormat,

NumberFormat numberFormat, NumberFormat percentFormat)

Creates a generator using the specifed format string, with custom formatters for the item
value and item percentage. This constructor throws an IllegalArgumentException if any of the
arguments is null.

31.26.4 Methods

To get the label for a section:

= public String generateSectionLabel(PieDataset dataset, Comparable key);
Returns the section label for the data item with the given key. The actual string returned
depends on the format string and locale specified in the constructor for this class.

31.26.5 Attributed Labels

An option is provided to use AttributedString instances as the section labels, however there is
currently no mechanism in the PiePlot class to display these (so, for now, you can just ignored these
methods).

= public AttributedString generateAttributedSectionLabel(PieDataset dataset, Comparable key);
Returns the attributed label for the section with the given key. This method can return null.

The default implementation of the above method just returns fixed strings that are controlled via
the following methods:

= public AttributedString getAttributedLabel(int series);
Returns the attributed label (possibly null).

= public void setAttributedLabel(int series, AttributedString label);
Sets the attributed label (null is permitted) for the given section.

31.26.6 Equals, Cloning and Serialization
This class overrides the equals() method:

= public boolean equals(Object obj);
Tests this label generator for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

31.26.7 Notes

In version 1.0.2, the default section label format changed to show only the section name (this change
affects default pie plots, among other things).

31.27 StandardPieToolTipGenerator

31.27.1 Overview

A label generator that can be used to generate tool tips for a PiePlot (this class implements the
PieToolTipGenerator interface). The generator uses Java’s MessageFormat class to construct labels
by substituting any or all of the objects listed in table 31.5.

The default tool tip format string is "{o}: ({1}, {2})", which displays the item key, followe